Skip to main content
Log in

Acute Restraint-Mediated Increases in Glutamate Levels in the Rat Brain: An In Vivo 1H-MRS Study at 4.7 T

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is well known that a variety of stressors induces a significant alteration in various putative neurotransmitters in the mammalian CNS. However, relatively little attention has been paid on the alteration of central glutamate neurotransmission, which is a major excitatory neurotransmitter in the brain. The present study aimed to determine whether acute restraint stress induces the changes in neurotransmitter level, especially glutamate, in rat brain and to examine whether 1-h recovery time after the termination of stress can revert to its pre-stress state. In vivo 1H-NMR spectra were acquired from the cerebral cortex and hippocampus (control: N = 10, stress: N = 10, stress + 1 h rest: N = 10) immediately or after 1 h rest from restraint stress. All in vivo proton spectra were automatically analyzed using LCModel. We found that acute restraint stress induced significant increase in glutamate concentrations in the cerebral cortex and the hippocampus of rat. However, the level could not revert to its pre-stress state by the end of 1-h recovery period in cerebral cortex of rats. In addition, glutamine/glutamate ratio, which may function as an index of the glutamatergic neurotransmission, was significantly lower in the cerebral cortex of both stress and 1 h stress + 1 h recovery groups, as compared to control. Our finding may provide important evidence for altered glutamatergic activity after the stress and suggest a potential biochemical marker for eventual diagnosis and/or therapy monitoring in mood disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  PubMed  CAS  Google Scholar 

  2. Lisman JE, Fellous JM, Wang XJ (1998) A role for NMDA-receptor channels in working memory. Nat Neurosci 1:273–275

    Article  PubMed  CAS  Google Scholar 

  3. Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharm Toxicol 42:165–179

    Article  CAS  Google Scholar 

  4. Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–884

    Article  PubMed  CAS  Google Scholar 

  5. Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657

    Article  PubMed  CAS  Google Scholar 

  6. Kim SY, Lee YJ, Kim H, Lee DW, Woo DC, Choi DB, Chae JH, Choe BY (2010) Desipramine attenuates forced swim test-induced behavioral and neurochemical alterations in mice: an in vivo 1H-MRS study at 9.4 T. Brain Res 1348:105–113

    Article  PubMed  CAS  Google Scholar 

  7. Gilad GM, Gilad VH, Wyatt W, Tizabi Y (1990) Region-selective stress-induced increase of glutamate uptake and release in rat forebrain. Brain Res 525:335–338

    Article  PubMed  CAS  Google Scholar 

  8. Keefe KA, Sved AF, Zigmond MJ, Abercrombie ED (1993) Stress-induced dopamine release in the neostriatum: evaluation of the role of action potentials in nigrostriatal dopamine neurons or local initiation by endogenous excitatory amino acids. J Neurochem 61:1943–1952

    Article  PubMed  CAS  Google Scholar 

  9. Karreman M, Moghaddam B (1996) Effect of a pharmacological stressor on glutamate efflux in the prefrontal cortex. Brain Res 716:180–182

    Article  PubMed  CAS  Google Scholar 

  10. McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    Article  PubMed  CAS  Google Scholar 

  11. McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:721–731

    Article  PubMed  CAS  Google Scholar 

  12. Young E, Haskett RF, Murphy-Weinberg V, Watson SJ, Akil H (1991) Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 48:693–699

    Article  PubMed  CAS  Google Scholar 

  13. Sapolsky R (2001) Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci USA 98:12320–12322

    Article  PubMed  CAS  Google Scholar 

  14. Drevets W (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11:240–249

    Article  PubMed  CAS  Google Scholar 

  15. Watanabe Y, Weiland NG, McEwen BS (1995) Effects of adrenal steroid manipulations and repeated restraint stress on dynorphin mRNA level and excitatory amino acid receptor binding in hippocampus. Brain Res 680:217–225

    Article  PubMed  CAS  Google Scholar 

  16. Reagan LP, Rosell DR, Wood GE, Spedding M, Muñoz C, Rothstein J, McEwen BS (2004) Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 101(7):2179–2184

    Article  PubMed  CAS  Google Scholar 

  17. Lowy MT, Gault L, Yamamoto BK (1993) Adrenalectomy attenuates stress-induced elevations in extracelluar glutamate concentrations in the hippocampus. J Neurochem 61(5):1957–1960

    Article  PubMed  CAS  Google Scholar 

  18. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29:804–811

    Article  PubMed  CAS  Google Scholar 

  19. Tkáč I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  PubMed  Google Scholar 

  20. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  21. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  PubMed  CAS  Google Scholar 

  22. Pfeuffer J, Tkáč I, Provencher SW, Gruetter R (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H-NMR spectra of the rat brain. J Magn Reson 141:104–120

    Article  PubMed  CAS  Google Scholar 

  23. Porcelli AJ, Cruz D, Wenberg K, Patterson MD, Biswal BB, Rypma B (2008) The effects of acute stress on human prefrontal working memory systems. Physiol Behav 95(3):282–289

    Article  PubMed  CAS  Google Scholar 

  24. Weerda R, Muehlhan M, Wolf OT, Thiel CM (2010) Effects of acute psychosocial stress on working memory related brain activity in men. Hum Brain Mapp 31:1418–1429

    Article  PubMed  Google Scholar 

  25. Sung KK, Jang DP, Lee S, Kim M, Lee SY, Kim YB, Park CW, Cho ZH (2009) Neural responses in rat brain during acute immobilization stress: a [F-18] FDG micro PET imaging study. NeuroImage 44:1074–1080

    Article  PubMed  Google Scholar 

  26. Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    Article  PubMed  CAS  Google Scholar 

  27. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkey. J Comp Neurol 363:615–641

    Article  PubMed  CAS  Google Scholar 

  28. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J (2007) Acute stress mediated increases in extracellular glutamate levels in the rat amygdale: differential effects of antidepressant treatment. Eur J Neurosci 25:3109–3114

    Article  PubMed  Google Scholar 

  29. McEween BS (2002) Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging 23:921–939

    Article  Google Scholar 

  30. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Uğurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27:1055–1063

    PubMed  CAS  Google Scholar 

  31. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  32. Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787

    Article  PubMed  CAS  Google Scholar 

  33. Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongur D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35(3):834–846

    Article  PubMed  CAS  Google Scholar 

  34. Tkáč I, Dubinsky JM, Keene CD, Gruetter R, Low WC (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 100:1397–1406

    Article  PubMed  Google Scholar 

  35. Pereira FC, Rolo MR, Marques E, Mendes VM, Ribeiro CF, Ali SF, Morgadinho T, Macedo TR (2008) Acute increase of the glutamate-glutamine cycling in discrete brain areas after administration of a single dose of amphetamine. Ann NY Acad Sci 1139:212–221

    Article  PubMed  CAS  Google Scholar 

  36. Duarte JM, Kulak A, Gholam-Razaee MM, Cuenod M, Gruetter R, Do KQ (2011) N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biol Psychiatry. doi:10.1016/j.biopsych.2011.07.035

  37. Iltis I, Koski DM, Eberly LE, Nelson CD, Deelchand DK, Valette J, Ugurbil K, Lim KO, Henry PG (2009) Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized 1H MRS study. NMR Biomed 22(7):737–744

    Article  PubMed  CAS  Google Scholar 

  38. Ongur D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF (2008) Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 64:718–726

    Article  PubMed  CAS  Google Scholar 

  39. Bustillo JR, Rowland LM, Mullins P, Jung R, Chen H, Qualls C, Hammond R, Brooks WM, Lauriello J (2010) 1H-MRS at 4 tesla in minimally treated early schizophrenia. Mol Psychiatry 15:629–636

    Article  PubMed  CAS  Google Scholar 

  40. Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M (2005) Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry. doi:10.1186/1471-244X-5-6

  41. Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OAC, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240

    Article  PubMed  CAS  Google Scholar 

  42. Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32:471–533

    Article  PubMed  CAS  Google Scholar 

  43. Ahmed N, Zahra N (2011) Neurochemcial correlates of alloxan diabetes: glucose and related brain metabolism in the rat. Neurochem Res 36:494–505

    Article  PubMed  CAS  Google Scholar 

  44. Mlynarik V, Cudalbu C, Xin L, Guretter R (2008) 1H NMR spectroscopy of rat brain in vivo at 14.1 Tesla: improvements in quantification of the neurochemical profile. J Magn Reson 194:163–168

    Article  PubMed  CAS  Google Scholar 

  45. Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B (2003) Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry 160:873–882

    Article  PubMed  Google Scholar 

  46. Coplan JD, Mathew SJ, Mao X, Smith ELP, Hof PR, Coplan PM, Rosenblum LA, Gorman JM, Shungu DC (2006) Decreased choline and creatine concentrations in centrum semiovale in patients with generalized anxiety disorder: relationship to IQ and early trauma. Psychiatr Res Neuroim 147:27–39

    Article  CAS  Google Scholar 

  47. Gabbay V, Hess DA, Babb JS, Klein RG, Gonen O (2007) Lateralized caudate metabolism abnormalities in adolescent major depressive disorder: a proton MR spectroscopy study. Am J Psychiatry 164:1881–1889

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the program of Basic Atomic Energy Research Institute (BAERI) (2010-0018142) which is a part of the Nuclear R&D Programs funded by the Ministry of Education, Science & Technology (MEST) of Korea and Seoul Fellowship from the Seoul Scholarship Foundation. And this work was supported by using animal MRI system at Korea Basic Science Institute (KBSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Young Choe.

Additional information

This paper was accepted for presentation at the 19th Scientific Meeting and Exhibition of the International Society of Magnetic Resonance in Medicine in Montréal, Canada, May 7–13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SY., Jang, EJ., Hong, K.S. et al. Acute Restraint-Mediated Increases in Glutamate Levels in the Rat Brain: An In Vivo 1H-MRS Study at 4.7 T. Neurochem Res 37, 740–748 (2012). https://doi.org/10.1007/s11064-011-0668-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0668-y

Keywords

Navigation