Skip to main content

Advertisement

Log in

BDNF-, IGF-1- and GDNF-Secreting Human Neural Progenitor Cells Rescue Amyloid β-Induced Toxicity in Cultured Rat Septal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by the depositions of amyloid-β (Aβ) proteins, resulting in a reduction of choline acetyltransferase (ChAT) activity of AD brain in the early stages of the disease. Several growth factors, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF)-1 and glial cell-derived neurotrophic factor (GDNF) are known to protect neuronal cell death in several neurodegenerative both in vitro and in vivo models. In this study, septal neurons were prepared from septal nucleus of embryonic (day 16-17) rat brain and treated with monomeric, oligomeric or fibrillar Aβ1-42 peptide. Oligomeric Aβ1-42, (10 μM) was the most potent at sublethal dose. Septal neuron cultures treated with BDNF, IGF-1 or GDNF or co-cultured with genetically modified human neural progenitor cells (hNPCs) secreting these neurotrophic factors (but not allowing contact between the two cell types), were protected from oligomeric Aβ1-42 peptide-induced cell death, and these trophic factors enhanced cholinergic functions by increasing ChAT expression level. These results indicate the potential of employing transplanted hNPCs for treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Francis PT, Palmer AM, Snape M et al (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  PubMed  CAS  Google Scholar 

  2. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  3. Schliebs R (2005) Basal forebrain cholinergic dysfunction in Alzheimer’s disease–interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 30:895–908

    Article  PubMed  CAS  Google Scholar 

  4. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  PubMed  CAS  Google Scholar 

  5. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20

    Article  PubMed  CAS  Google Scholar 

  6. Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12:4377–4387

    Article  PubMed  CAS  Google Scholar 

  7. Holzgrabe U, Kapkova P, Alptuzun V et al (2007) Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets 11:161–179

    Article  PubMed  CAS  Google Scholar 

  8. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  CAS  Google Scholar 

  9. Tuszynski MH (2002) Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 1:51–57

    Article  PubMed  Google Scholar 

  10. Blurton-Jones M, Kitazawa M, Martinez-Coria H et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 106:13594–13599

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki M, Svendsen CN (2008) Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis. Trends Neurosci 31:192–198

    Article  PubMed  CAS  Google Scholar 

  12. Tuszynski MH, Thal L, Pay M et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  PubMed  CAS  Google Scholar 

  13. Nagahara AH, Merrill DA, Coppola G et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337

    Article  PubMed  CAS  Google Scholar 

  14. Chourbaji S, Hellweg R, Brandis D et al (2004) Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res 121:28–36

    Article  PubMed  CAS  Google Scholar 

  15. Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 490:127–133

    Article  PubMed  CAS  Google Scholar 

  16. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    Google Scholar 

  17. Golden JP, Milbrandt J, Johnson EM Jr (2003) Neurturin and persephin promote the survival of embryonic basal forebrain cholinergic neurons in vitro. Exp Neurol 184:447–455

    Article  PubMed  CAS  Google Scholar 

  18. Straten G, Eschweiler GW, Maetzler W et al (2009) Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls. J Alzheimers Dis 18:331–337

    PubMed  CAS  Google Scholar 

  19. Ebert AD, Svendsen CN (2005) A new tool in the battle against Alzheimer’s disease and aging: ex vivo gene therapy. Rejuvenation Res 8:131–134

    Article  PubMed  CAS  Google Scholar 

  20. Ebert AD, Barber AE, Heins BM et al (2010) Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington’s disease. Exp Neurol 224:155–162

    Article  PubMed  CAS  Google Scholar 

  21. Ebert AD, Beres AJ, Barber AE et al (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209:213–223

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki M, McHugh J, Tork C et al (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2:e689

    Article  PubMed  Google Scholar 

  23. Schnitzler AC, Lopez-Coviella I, Blusztajn JK (2008) Purification and culture of nerve growth factor receptor (p75)-expressing basal forebrain cholinergic neurons. Nat Protoc 3:34–40

    Article  PubMed  CAS  Google Scholar 

  24. Svendsen CN, ter Borg MG, Armstrong RJ et al (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85:141–152

    Article  PubMed  CAS  Google Scholar 

  25. Capowski EE, Schneider BL, Ebert AD et al (2007) Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J Neurosci Methods 163:338–349

    Article  PubMed  CAS  Google Scholar 

  26. Dahlgren KN, Manelli AM, Stine WB Jr et al (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    Article  PubMed  CAS  Google Scholar 

  27. Soiampornkul R, Tong L, Thangnipon W et al (2008) Interleukin-1beta interferes with signal transduction induced by neurotrophin-3 in cortical neurons. Brain Res 1188:189–197

    Article  PubMed  CAS  Google Scholar 

  28. Fuentealba RA, Farias G, Scheu J et al (2004) Signal transduction during amyloid-beta-peptide neurotoxicity: role in Alzheimer disease. Brain Res Brain Res Rev 47:275–289

    Article  PubMed  CAS  Google Scholar 

  29. Smith WW, Gorospe M, Kusiak JW (2006) Signaling mechanisms underlying Abeta toxicity: potential therapeutic targets for Alzheimer’s disease. CNS Neurol Disord Drug Targets 5:355–361

    Article  PubMed  CAS  Google Scholar 

  30. Gandy S (2005) The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest 115:1121–1129

    PubMed  CAS  Google Scholar 

  31. Giuffrida ML, Caraci F, Pignataro B et al (2009) Beta-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587

    Article  PubMed  CAS  Google Scholar 

  32. Esposito E, Cuzzocrea S (2010) New therapeutic strategy for Parkinson’s and Alzheimer’s disease. Curr Med Chem 17:2764–2774

    Article  PubMed  CAS  Google Scholar 

  33. Song MS, Saavedra L, de Chaves EI (2006) Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Abeta in distal axons. Neurobiol Aging 27:1224–1238

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki M, McHugh J, Tork C et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16:2002–2010

    Article  PubMed  CAS  Google Scholar 

  35. Sarabi A, Hoffer BJ, Olson L et al (2003) Glial cell line neurotrophic factor-family receptor alpha-1 is present in central neurons with distinct phenotypes. Neuroscience 116:261–273

    Article  PubMed  CAS  Google Scholar 

  36. Bondy C, Werner H, Roberts CT Jr et al (1992) Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46:909–923

    Article  PubMed  CAS  Google Scholar 

  37. Burgess A, Aubert I (2006) Polysialic acid limits choline acetyltransferase activity induced by brain-derived neurotrophic factor. J Neurochem 99:797–806

    Article  PubMed  CAS  Google Scholar 

  38. Gomez JM (2008) Growth hormone and insulin-like growth factor-I as an endocrine axis in Alzheimer’s disease. Endocr Metab Immune Disord Drug Targets 8:143–151

    Article  PubMed  CAS  Google Scholar 

  39. Jarvis K, Assis-Nascimento P, Mudd LM et al (2007) Beta-amyloid toxicity and reversal in embryonic rat septal neurons. Neurosci Lett 423:184–188

    Article  PubMed  CAS  Google Scholar 

  40. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  PubMed  CAS  Google Scholar 

  41. Baloh RH, Enomoto H, Johnson EM Jr et al (2000) The GDNF family ligands and receptors—implications for neural development. Curr Opin Neurobiol 10:103–110

    Article  PubMed  CAS  Google Scholar 

  42. Araujo DM, Hilt DC, Miller PJ et al (1997) ret receptor tyrosine kinase immunoreactivity is altered in glial cell line-derived neurotrophic factor-responsive neurons following lesions of the nigrostriatal and septohippocampal pathways. Neuroscience 80:9–16

    Article  PubMed  CAS  Google Scholar 

  43. Golden JP, Baloh RH, Kotzbauer PT et al (1998) Expression of neurturin, GDNF, and their receptors in the adult mouse CNS. J Comp Neurol 398:139–150

    Article  PubMed  CAS  Google Scholar 

  44. Golden JP, DeMaro JA, Osborne PA et al (1999) Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol 158:504–528

    Article  PubMed  CAS  Google Scholar 

  45. Ha DH, Robertson RT, Ribak CE et al (1996) Cultured basal forebrain cholinergic neurons in contact with cortical cells display synapses, enhanced morphological features, and decreased dependence on nerve growth factor. J Comp Neurol 373:451–465

    Article  PubMed  CAS  Google Scholar 

  46. Williams LR, Inouye G, Cummins V et al (1996) Glial cell line-derived neurotrophic factor sustains axotomized basal forebrain cholinergic neurons in vivo: dose-response comparison to nerve growth factor and brain-derived neurotrophic factor. J Pharmacol Exp Ther 277:1140–1151

    PubMed  CAS  Google Scholar 

  47. Gerlai R, McNamara A, Choi-Lundberg DL et al (2001) Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur J Neurosci 14:1153–1163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Office of the Higher Education Commission, Thailand, for providing grant funds via the Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program Thai Doctoral Degree for NK. This work was partially supported by Mahidol University, grant no. 02011868-0004. We are thankful to Masatoshi Suzuki and Craig Atwood at the University of Wisconsin-Madison, USA for their advice on experimental techniques and Prof. Prapon Wilairat for his critical reading in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wipawan Thangnipon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitiyanant, N., Kitiyanant, Y., Svendsen, C.N. et al. BDNF-, IGF-1- and GDNF-Secreting Human Neural Progenitor Cells Rescue Amyloid β-Induced Toxicity in Cultured Rat Septal Neurons. Neurochem Res 37, 143–152 (2012). https://doi.org/10.1007/s11064-011-0592-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0592-1

Keywords

Navigation