Skip to main content

Advertisement

Log in

Effects of Octreotide in Chronically Mild Stressed Rats: Possible Role of Immune and Oxidative Stress Pathways

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Impairment of neuroendocrine, immune and antioxidant defenses contribute to pathophysiology of stress-induced depression. Somatostatin executes diverse regulatory effects on endocrine, exocrine and neural functions; however, the possibility that octreotide, a synthetic somatostatin analogue might mitigate stress-induced depression remains elusive. Hence, the current study aimed to explore the immunomodulatory and antioxidant effects of octreotide in a model of chronic mild stress (CMS). This paradigm was performed by exposing rats to a combination of mild unpredictable stressors for 21 days. Fifty male Wistar rats were divided into five groups; (1) control receiving saline, (2) octreotide given to normal unstressed animals. The remaining three groups were subjected to (3) CMS alone or in combination with octreotide (4) 50 μg/kg or (5) 90 μg/kg. Octreotide increased sucrose preference index and attenuated CMS-induced increases in plasma adrenocorticotrophic hormone and corticosterone levels. In addition, octreotide decreased plasma tumor necrosis factor-alpha concentration. Moreover, it prevented CMS-induced oxidative damage by enhancing the antioxidant defenses superoxide dismutase, glutathione reductase and glutathione in the hippocampus. Furthermore, octreotide normalized the elevated malondialdehyde and lactate dehydrogenase levels in the hippocampus. These results demonstrate a possible antidepressant-like activity of octreotide in CMS due to its antioxidant/antiinflammatory aptitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotrophic hormone

CMS:

Chronic mild stress

CORT:

Corticosterone

CRF:

Corticotrophin-releasing factor

CRH:

Corticotrophin-releasing hormone

DTNB:

5,5′-dithiobis-(2-nitrobenzoic acid)

GR:

Glutathione reductase

GSH:

Glutathione

HPA:

Hypothalamic-pituitary–adrenal axis

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

NADPH:

Nicotinamide adenine dinucleotide phosphate

NADP:

Nicotinamide adenine dinucleotide

NF-KB:

Nuclear factor-kappa B

OCT:

Octreotide

PVN:

Paraventricular nucleus

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SP:

Sucrose preference

SRIF:

Somatotropin release inhibiting factor

TBA:

Trichloroacetic acid-thiobarbituric acid

TNF-α:

Tumor necrosis factor-alpha

References

  1. Kessler RC et al (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 51(1):8–19

    Google Scholar 

  2. Johnson BN, Yamamoto BK (2009) Chronic unpredictable stress augments +3, 4-methylenedioxymethamphetamine-induced monoamine depletions: the role of corticosterone. Neuroscience 159(4):1233–1243

    Article  PubMed  CAS  Google Scholar 

  3. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871

    Article  PubMed  Google Scholar 

  4. Lucca G et al (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 54(5–6):358–362

    Article  PubMed  CAS  Google Scholar 

  5. Lucca G et al (2009) Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 43(9):864–869

    Article  PubMed  Google Scholar 

  6. Hayley S et al (2001) Central monoamine and plasma corticosterone changes induced by a bacterial endotoxin: sensitization and cross-sensitization effects. Eur J Neurosci 13(6):1155–1165

    Article  PubMed  CAS  Google Scholar 

  7. Maes M et al (1995) Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 34(4):301–309

    Article  PubMed  CAS  Google Scholar 

  8. ter Veld F et al (2009) Effects of somatostatin and octreotide on cytokine and chemokine production by lipopolysaccharide-activated peripheral blood mononuclear cells. J Endocrinol Invest 32(2):123–129

    PubMed  CAS  Google Scholar 

  9. Van Op den bosch J, Van Nassauw L, Van Marck E, Timmermans JP (2009) Somatostatin modulates mast cell-induced responses in murine spinal neurons and satellite cells. Am J Physiol Gastrointest Liver Physiol 297(2):G406–G417

    Article  PubMed  CAS  Google Scholar 

  10. Cervia D, Bagnoli P (2007) An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 116(2):322–341

    Article  PubMed  CAS  Google Scholar 

  11. Zhang K et al (1999) Decreased expression of the mRNA for somatostatin in the periventricular nucleus of depression-model rats. Life Sci 65(9):PL87–PL94

    Google Scholar 

  12. Lamers CB, Bijlstra AM, Harris AG (1993) Octreotide, a long-acting somatostatin analog, in the management of postoperative dumping syndrome. An update. Dig Dis Sci 38(2):359–364

    Google Scholar 

  13. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134(4):319–329

    Google Scholar 

  14. Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16(4):525–534

    Google Scholar 

  15. Loas G (1996) Vulnerability to depression: a model centered on anhedonia. J Affect Disord 41(1):39–53

    Article  PubMed  CAS  Google Scholar 

  16. Erol FS et al (2008) Comparison of the effects of octreotide and melatonin in preventing nerve injury in rats with experimental spinal cord injury. J Clin Neurosci 15(7):784–790

    Article  PubMed  CAS  Google Scholar 

  17. Lai HS, Chen Y (1996) Effect of octreotide on postoperative intraperitoneal adhesions in rats. Scand J Gastroenterol 31(7):678–681

    Article  PubMed  CAS  Google Scholar 

  18. Grippo AJ et al (2005) Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav 84(5):697–706

    Article  PubMed  CAS  Google Scholar 

  19. Willner P et al (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 93(3):358–364

    Article  CAS  Google Scholar 

  20. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  PubMed  CAS  Google Scholar 

  21. Schurr A, Livne A (1976) Differential inhibition of mitochondrial monoamine oxidase from brain by hashish components. Biochem Pharmacol 25(10):1201–1203

    Article  PubMed  CAS  Google Scholar 

  22. Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86(1):271–278

    Google Scholar 

  23. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  PubMed  CAS  Google Scholar 

  24. Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  26. Anacker C et al (2010) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology. Apr 15. [Epub ahead of print]

  27. Maniam J, Morris MJ (2010) Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus. Psychoneuroendocrinology (Jun 29. [Epub ahead of print])

  28. Li S et al (2008) Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci 82(17–18):934–942

    Google Scholar 

  29. Grippo AJ et al (2003) Cytokine mediation of experimental heart failure-induced anhedonia. Am J Physiol Regul Integr Comp Physiol 284(3):R666–R673

    PubMed  CAS  Google Scholar 

  30. d’Audiffret AC et al (2010) Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease? J Appl Physiol 108(5):1041–1051

    Article  PubMed  Google Scholar 

  31. Miron SD, Markowitz D, Minotti A (1998) Accumulation of In-111 Octreotide in brain infarcts: a case report. Clin Nucl Med 23(3):163–164

    Article  PubMed  CAS  Google Scholar 

  32. Peluso G et al (1996) Modulation of cytokine production in activated human monocytes by somatostatin. Neuropeptides 30(5):443–451

    Article  PubMed  CAS  Google Scholar 

  33. Eliakim R et al (1993) Octreotide effectively decreases mucosal damage in experimental colitis. Gut 34(2):264–269

    Article  PubMed  CAS  Google Scholar 

  34. Lang A et al (2005) Somatostatin inhibits pro-inflammatory cytokine secretion from rat hepatic stellate cells. Liver Int 25(4):808–816

    Article  PubMed  CAS  Google Scholar 

  35. Zhao J et al (2009) Insulin-like growth factor-I reduces stress-induced gastric mucosal injury by inhibiting neutrophil activation in mice. Growth Horm IGF Res 19(2):136–145

    Article  PubMed  CAS  Google Scholar 

  36. You JM et al (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87(6):440–447

    Google Scholar 

  37. Filipovic D, Pajovic SB (2009) Differential regulation of CuZnSOD expression in rat brain by acute and/or chronic stress. Cell Mol Neurobiol 29(5):673–681

    Article  PubMed  CAS  Google Scholar 

  38. Djordjevic A et al (2010) Chronic social isolation suppresses proplastic response and promotes proapoptotic signalling in prefrontal cortex of Wistar rats. J Neurosci 88(11):2524–2533

    CAS  Google Scholar 

  39. Madrigal JL et al (2003) Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology 28(9):1579–1588

    Article  PubMed  CAS  Google Scholar 

  40. Olivenza R et al (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74(2):785–791

    Article  PubMed  CAS  Google Scholar 

  41. Campo GM et al (2005) Purified human plasma glycosaminoglycans limit oxidative injury induced by iron plus ascorbate in skin fibroblast cultures. Toxicol In Vitro 19(5):561–572

    Article  PubMed  CAS  Google Scholar 

  42. Ahmad A et al (2010) Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13(4):355–364

    Article  PubMed  Google Scholar 

  43. Srikant CB, Patel YC (1981) Receptor binding of somatostatin-28 is tissue specific. Nature 294(5838):259–260

    Article  PubMed  CAS  Google Scholar 

  44. Fernandez-Checa JC et al (2010) Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets 9(4):439–454

    PubMed  CAS  Google Scholar 

  45. Kara H et al (2010) Protective effect of octreotide on intra-tracheal bleomycin-induced oxidative damage in rats. Exp Toxicol Pathol 62(3):235–241

    Article  PubMed  CAS  Google Scholar 

  46. Niedermuhlbichler M, Wiedermann CJ (1992) Suppression of superoxide release from human monocytes by somatostatin-related peptides. Regul Pept 41(1):39–47

    Article  PubMed  CAS  Google Scholar 

  47. Palsamy P, Sivakumar S, Subramanian S (2010) Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chem Biol Interact 186(2):200–210

    Article  PubMed  CAS  Google Scholar 

  48. Deshmukh R et al (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine–a PDE1 inhibitor. Eur J Pharmacol 620(1–3):49–56

    Article  PubMed  CAS  Google Scholar 

  49. Celebi S et al (2002) Effects of melatonin, vitamin E and octreotide on lipid peroxidation during ischemia-reperfusion in the guinea pig retina. Eur J Ophthalmol 12(2):77–83

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha N. Nassar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaalan, M.F., Nassar, N.N. Effects of Octreotide in Chronically Mild Stressed Rats: Possible Role of Immune and Oxidative Stress Pathways. Neurochem Res 36, 1717–1723 (2011). https://doi.org/10.1007/s11064-011-0486-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0486-2

Keywords

Navigation