Skip to main content
Log in

Aspartate Release and Signalling in the Hippocampus

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Ca2+-dependent release of aspartate from hippocampal preparations was first reported 35 years ago, but the functional significance of this process remains uncertain. Aspartate satisfies all the criteria normally required for identification of a CNS transmitter. It is synthesized in nerve terminals, is accumulated and stored in synaptic vesicles, is released by exocytosis upon nerve terminal depolarization, and activates postsynaptic NMDA receptors. Aspartate may be employed as a neuropeptide-like co-transmitter by pathways that release either glutamate or GABA as their principal transmitter. Aspartate mechanisms include vesicular transport by sialin, vesicular content sensitive to glucose concentration, release mainly outside the presynaptic active zones, and selective activation of extrasynaptic NR1-NR2B NMDA receptors. Possible neurobiological functions of aspartate in immature neurons include activation of cAMP-dependent gene transcription and in mature neurons inhibition of CREB function, reduced BDNF expression, and induction of excitotoxic neuronal death. Recent findings suggest new experimental approaches toward resolving the functional significance of aspartate release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  2. Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of the dentate area in the unanaesthetized rabbit following stimulation of the perforant path. J Physiol 232:357–374

    PubMed  CAS  Google Scholar 

  3. Cotman CW, Nadler JV (1978) Reactive synaptogenesis in the hippocampus. In: Cotman CW (ed) Neuronal plasticity. Raven, New York, pp 227–271

    Google Scholar 

  4. Curtis DR, Phillis JW, Watkins JC (1960) The chemical excitation of spinal neurones by certain acidic amino acids. J Physiol 150:656–682

    PubMed  CAS  Google Scholar 

  5. Curtis DR, Watkins JC (1960) The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 6:117–141

    Article  PubMed  CAS  Google Scholar 

  6. Nadler JV, Vaca KW, White WF et al (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260:538–540

    Article  PubMed  CAS  Google Scholar 

  7. Nadler JV, White WF, Vaca KW et al (1977) Characterization of putative amino acid transmitter release from slices of rat dentate gyrus. J Neurochem 29:279–290

    Article  PubMed  CAS  Google Scholar 

  8. Gundersen V, Ottersen OP, Storm-Mathisen J (1991) Aspartate- and glutamate-like immunoreactivities in rat hippocampal slices: depolarization-induced redistribution and effects of precursors. Eur J Neurosci 3:1281–1299

    Article  PubMed  Google Scholar 

  9. Gundersen V, Chaudhry FA, Bjaalie JG et al (1998) Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18:6059–6070

    PubMed  CAS  Google Scholar 

  10. Gundersen V, Holten AT, Storm-Mathisen J (2004) GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission. Mol Cell Neurosci 26:156–165

    Article  PubMed  CAS  Google Scholar 

  11. Larsson M, Persson S, Ottersen OP et al (2001) Quantitative analysis of immunogold labeling indicates low levels and non-vesicular localization of L-aspartate in rat primary afferent terminals. J Comp Neurol 430:147–159

    Article  PubMed  CAS  Google Scholar 

  12. Persson S, Broman J (2004) Glutamate, but not aspartate, is enriched in trigeminothalamic tract terminals and associated with their synaptic vesicles in the rat nucleus submedius. Exp Brain Res 157:152–161

    Article  PubMed  CAS  Google Scholar 

  13. Gundersen V, Fonnum F, Ottersen OP et al (2001) Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: a quantitative immunogold study. J Cereb Blood Flow Metab 21:41–51

    Article  PubMed  CAS  Google Scholar 

  14. Burke SP, Nadler JV (1988) Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J Neurochem 51:1541–1551

    Article  PubMed  CAS  Google Scholar 

  15. Zhou M, Peterson CL, Lu Y-B et al (1995) Release of glutamate and aspartate from CA1 synaptosomes: selective modulation of aspartate release by ionotropic glutamate receptor ligands. J Neurochem 64:1556–1566

    Article  PubMed  CAS  Google Scholar 

  16. Bradford SE, Nadler JV (2004) Aspartate release from rat hippocampal synaptosomes. Neuroscience 128:751–765

    Article  PubMed  CAS  Google Scholar 

  17. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    Article  PubMed  Google Scholar 

  18. Peterson CL, Thompson MA, Martin D et al (1995) Modulation of glutamate and aspartate release from slices of hippocampal area CA1 by inhibitors of arachidonic acid metabolism. J Neurochem 64:1152–1160

    Article  PubMed  CAS  Google Scholar 

  19. Herrero MT, Oset-Gasque MJ, Cañadas C et al (1998) Effect of various depolarizing agents on endogenous amino acid transmitter release in rat cortical neurons in culture. Neurochem Int 32:257–264

    Article  PubMed  CAS  Google Scholar 

  20. Fleck MW, Barrionuevo G, Palmer AM (2001) Synaptosomal and vesicular accumulation of L-glutamate, L-aspartate and D-aspartate. Neurochem Int 39:217–225

    Article  PubMed  CAS  Google Scholar 

  21. Cavallero A, Marte A, Fedele E (2009) L-Aspartate as an amino acid neurotransmitter: mechanisms of the depolarization-induced release from cerebrocortical synaptosomes. J Neurochem 110:924–934

    Article  PubMed  CAS  Google Scholar 

  22. Iwamoto T, Watano T, Shigekawa M (1996) A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397

    Article  PubMed  CAS  Google Scholar 

  23. Holten AT, Morland C, Nordengen K et al (2008) Vesicular release of L- and D-aspartate from hippocampal nerve terminals: immunogold evidence. Open Neurosci J 2:51–58

    Article  CAS  Google Scholar 

  24. McMahon HT, Foran P, Dolly JO et al (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, γ-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. J Biol Chem 267:21338–21343

    PubMed  CAS  Google Scholar 

  25. Fleck MW, Barrionuevo G, Palmer AM (2001) Release of D-threo-β-hydroxyaspartate as a false transmitter from excitatory amino acid-releasing nerve terminals. Neurochem Int 39:75–81

    Article  PubMed  CAS  Google Scholar 

  26. Rossetto O, Morbiato L, Caccin P et al (2006) Presynaptic enzymatic neurotoxins. J Neurochem 97:1534–1545

    Article  PubMed  CAS  Google Scholar 

  27. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  28. Simpson LL (2004) Identification of the major steps in botulinum neurotoxin action. Annu Rev Pharmacol Toxicol 44:167–193

    Article  PubMed  CAS  Google Scholar 

  29. Wang L, Nadler JV (2007) Reduced aspartate release from rat hippocampal synaptosomes loaded with Clostridial toxin light chain by electroporation: evidence for an exocytotic mechanism. Neurosci Lett 412:239–242

    Article  PubMed  CAS  Google Scholar 

  30. Sobolevsky AI, Khodorov BI (1999) Blockade of NMDA channels in acutely isolated rat hippocampal neurons by the Na+/Ca2+ exchange inhibitor KB-R7943. Neuropharmacology 38:1235–1242

    Article  PubMed  CAS  Google Scholar 

  31. Arawaka N, Sakaue M, Yokoyama I et al (2000) KB-R7943 inhibits store-operated Ca2+ entry in cultured neurons and astrocytes. Biochem Biophys Res Comm 279:354–357

    Article  Google Scholar 

  32. Pintado AJ, Herrero CJ, Garcia AG et al (2000) The novel Na+/Ca2+ exchange inhibitor KB-R7943 also blocks native and expressed neuronal nicotinic receptors. Brit J Pharmacol 130:1893–1902

    Article  CAS  Google Scholar 

  33. Kraft R (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Comm 361:230–236

    Article  PubMed  CAS  Google Scholar 

  34. Liang GH, Kim JA, Seol GH et al (2008) The Na+/Ca2+ exchange inhibitor KB-R7943 activates large-conductance Ca2+-activated K+ channels in endothelial and vascular smooth muscle cells. Eur J Pharmacol 582:35–41

    Article  PubMed  CAS  Google Scholar 

  35. Chung YH, Ahn HS, Kim D et al (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085:132–137

    Article  PubMed  CAS  Google Scholar 

  36. Zhou J, Du W, Zhou K et al (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11:741–743

    Article  PubMed  CAS  Google Scholar 

  37. Szerb JC (1988) Changes in the relative amounts of aspartate and glutamate released and retained in hippocampal slices during stimulation. J Neurochem 50:219–224

    Article  PubMed  CAS  Google Scholar 

  38. McNay EC, Gold PE (1999) Extracellular glucose concentrations in the rat hippocampus measured by zero-net-flux: effects of microdialysis flow rate, strain and age. J Neurochem 72:785–790

    Article  PubMed  CAS  Google Scholar 

  39. Burke SP, Nadler JV (1989) Effects of glucose deficiency on glutamate/aspartate release and excitatory synaptic responses in the hippocampal CA1 area in vitro. Brain Res 500:333–342

    Article  PubMed  CAS  Google Scholar 

  40. Fleck MW, Henze DA, Barrionuevo G et al (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955

    PubMed  CAS  Google Scholar 

  41. Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type 1 phosphate transporter family. Pflügers Arch 447:629–635

    Article  PubMed  CAS  Google Scholar 

  42. Miyaji T, Echigo N, Hiasa M et al (2008) Identification of a vesicular aspartate transporter. Proc Natl Acad Sci USA 105:11720–11724

    Article  PubMed  CAS  Google Scholar 

  43. Prolo LM, Vogel H, Reimer RJ (2009) The lysosomal sialic acid transporter sialin is required for normal CNS myelination. J Neurosci 29:15355–15365

    Article  PubMed  CAS  Google Scholar 

  44. Li D, Ropert N, Koulakoff A et al (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28:7648–7658

    Article  PubMed  CAS  Google Scholar 

  45. Aula N, Kopra O, Jalanko A et al (2004) Sialin expression in the CNS implicates extralysosomal function in neurons. Neurobiol Dis 15:251–261

    Article  PubMed  CAS  Google Scholar 

  46. Yatsushiro S, Yamada H, Kozaki S et al (1997) L-Aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes. J Neurochem 69:340–347

    Article  PubMed  CAS  Google Scholar 

  47. Yarovaya N, Schot R, Fodero L et al (2005) Sialin, an anion transporter defective in sialic acid storage diseases, shows highly variable expression in adult mouse brain, and is developmentally regulated. Neurobiol Dis 19:351–365

    Article  PubMed  CAS  Google Scholar 

  48. Aula N, Salomäki P, Timonen R et al (2000) The spectrum of SLC17A5-gene mutations resulting in free sialic acid-storage diseases indicates some genotype-phenotype correlation. Am J Hum Genet 67:832–840

    Article  PubMed  CAS  Google Scholar 

  49. Morin P, Sagné C, Gasnier B (2004) Functional characterization of wild-type and mutant human sialin. EMBO J 23:4560–4570

    Article  PubMed  CAS  Google Scholar 

  50. Wreden CC, Wlizla M, Reimer RJ (2005) Varied mechanisms underlie the free sialic acid storage disorders. J Biol Chem 280:1408–1416

    Article  PubMed  CAS  Google Scholar 

  51. Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10:2385–2399

    PubMed  CAS  Google Scholar 

  52. Curras MC, Dingledine R (1992) Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Mol Pharmacol 41:520–526

    PubMed  CAS  Google Scholar 

  53. Frauli M, Neuville P, Vol C et al (2006) Among the twenty classical L-amino acids, only glutamate directly activates metabotropic glutamate receptors. Neuropharmacology 50:245–253

    Article  PubMed  CAS  Google Scholar 

  54. Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95:1727–1734

    Article  PubMed  CAS  Google Scholar 

  55. Erreger K, Geballe MT, Kristensen A et al (2007) Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol Pharmacol 72:907–920

    Article  PubMed  CAS  Google Scholar 

  56. Fonnum F, Paulsen RH, Fosse VM et al (1986) Synthesis and release of amino acid transmitters. In: Schwarcz R, Ben-Ari Y (eds) Excitatory amino acids and epilepsy. Advances in Experimental medicine and biology, 203. Plenum, New York, pp 285–293

    Google Scholar 

  57. Szerb JC, O’Regan PA (1987) Reversible shifts in the Ca2+-dependent release of aspartate and glutamate from hippocampal slices with changing glucose concentrations. Synapse 1:265–272

    Article  PubMed  CAS  Google Scholar 

  58. Zhang X, Nadler JV (2009) Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release. Brain Res 1295:13–20

    Article  PubMed  CAS  Google Scholar 

  59. Almeida LEF, Murray PD, Zielke HR et al (2009) Autocrine activation of neuronal NMDA receptors by aspartate mediates dopamine- and cAMP-induced CREB-dependent gene transcription. J Neurosci 29:12702–12710

    Article  PubMed  CAS  Google Scholar 

  60. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  61. Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opinion Neurobiol 13:366–371

    Article  CAS  Google Scholar 

  62. Wahl A-S, Buchthal B, Rode F et al (2009) Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors. Neuroscience 158:344–352

    Article  PubMed  CAS  Google Scholar 

  63. Baird DH, Trenkner E, Mason CA (1996) Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor. J Neurosci 16:2642–2648

    PubMed  CAS  Google Scholar 

  64. Rocha M, Sur M (1995) Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 92:8026–8030

    Article  PubMed  CAS  Google Scholar 

  65. Nacher J, Rosell DR, Alonso-Llosa G et al (2001) NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 13:512–520

    Article  PubMed  CAS  Google Scholar 

  66. Nadler JV, Evenson DA, Cuthbertson GJ (1981) Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons. Neuroscience 6:2505–2517

    Article  PubMed  CAS  Google Scholar 

  67. Breder J, Sabelhaus CF, Opitz T, Reymann KG, Schröder UH (2000) Inhibition of different pathways influencing Na+ homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology 39:1779–1787

    Article  PubMed  CAS  Google Scholar 

  68. Schröder UH, Breder J, Sabelhaus CF, Reymann KG (1999) The novel Na+/Ca2+ exchange inhibitor KB-R7943 protects CA1 neurons in rat hippocampal slices against hypoxic/hypoglycemic injury. Neuropharmacology 38:319–321

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the many collaborators who contributed their efforts toward these studies. Special thanks go to Dianna Johnson, without whose collaboration the study of excitatory hippocampal transmitters might not have got off the ground, and Carl Cotman, who supported and encouraged this line of research. I also wish to acknowledge the generous support of my laboratory’s studies of aspartate transmission by grants NS 16064 and NS 47096 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Victor Nadler.

Additional information

Special Issue: In Honor of Dr. Dianna Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, J.V. Aspartate Release and Signalling in the Hippocampus. Neurochem Res 36, 668–676 (2011). https://doi.org/10.1007/s11064-010-0291-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0291-3

Keywords

Navigation