Skip to main content

Advertisement

Log in

Human Serotonin Transporter Expression During Megakaryocytic Differentiation of MEG-01 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The serotonin (5-HT) transporter (SERT) has been found altered in platelets of patients with genetically complex disorders, including mood-anxiety, pain and eating disorders. In this study, we used cell cultures of platelet precursors as models of investigation on mechanisms of SERT regulation: SERT expression was appraised during megakaryocytic differentiation of human megakaryoblastic MEG-01 cells. Cells were cultured for 8 days with 10−7M 4-β-12-tetradecanoylphorbol-13-acetate (β-TPA) in the presence of 10% fetal bovine serum (FBS) and SERT was assessed by real time PCR, immunofluorescence microscopy, Western blot and [3H]5-HT re-uptake. Results revealed that SERT is present in control-untreated MEG-01 cells. β-TPA-differentiating MEG-01 cells showed a redistribution of SERT fluorescence, diffuse to cell bodies and blebs along with a 3-fold SERT mRNA increase and a moderate raise in SERT protein (1.5/1.4-fold) by immunoblot and re-uptake assays. In summary, we have shown herein that control megakaryoblasts express the SERT protein. SERT is modulated by differentiation events, implying that SERT density in platelets is under the control of megakaryocytopoiesis stages. Differentiation of MEG-01 cells can provide considerable insight into interactions between SERT genetics, transmitter-hormonal/homeostatic mechanisms and signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Snyder SH (1970) Putative neurotransmitters in the brain: selective neuronal uptake, subcellular localization and interactions with centrally acting drugs. Biol Psychiatry 2:367–389

    CAS  PubMed  Google Scholar 

  2. Hainer V, Kabrnova K, Aldhoon B (2006) Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann N Y Acad Sci 1083:252–269

    Article  CAS  PubMed  Google Scholar 

  3. Blakely RD, Beerson HE, Freneau RT et al (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  CAS  PubMed  Google Scholar 

  4. Ramamoorthy S, Cool DR, Mahesh Vb et al (1993) Regulation of human serotonin transporter. J Biol Chem 268:21626–21631

    CAS  PubMed  Google Scholar 

  5. Lesch KP, Wolozin BL, Estler HC et al (1993) Isolation of cDNA encoding the human serotonin transporter. J Neural Transm Gen Sect 91:67–72

    Article  CAS  PubMed  Google Scholar 

  6. Lesch KP, Wolozin BL, Estler HC et al (1993) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem 60:2319–2322

    Article  CAS  PubMed  Google Scholar 

  7. Iceta R, Mesonero JE, Aramayona JJ et al (2006) Molecular characterization and intracellular regulation of the human serotonin transporter in Caco-2 cells. J Physiol Pharmacol 57:119–130

    CAS  PubMed  Google Scholar 

  8. Iny LJ, Pecknold J, Suranyi-Cadotte BE et al (1994) Studies of a neurochemical link between depression, anxiety and stress from [3H]imipramine and [3H]paroxetine binding on human platelets. Biol Psychiatry 36:281–291

    Article  CAS  PubMed  Google Scholar 

  9. Nemeroff CB, Knight DL, Franks J et al (1994) Further studies on platelet serotonin transporter binding in depression. Am J Psychiatry 151:1623–1625

    CAS  PubMed  Google Scholar 

  10. Marazziti D, Rossi A, Dell’Osso L et al (1999) Decreased platelet 3H-paroxetine binding in untreated panic disorder patients. Life Sci 65:2735–2741

    Article  CAS  PubMed  Google Scholar 

  11. Marazziti D, Dell’Osso L, Presta S et al (1999) Platelet [3H]paroxetine binding in patients with OCD-related disorders. Psychiatry Res 89:223–228

    Article  CAS  PubMed  Google Scholar 

  12. Marazziti D, Dell’Osso B, Baroni S et al (2006) Common alterations in the serotonin transporter in platelets and lymphocytes of psychotic patients. Pharmacopsychiatry 39:35–38

    Article  CAS  PubMed  Google Scholar 

  13. Ramacciotti CE, Coli E, Paoli R et al (2003) Serotonergic activity measured by platelet [3H]paroxetine binding in patients with eating disorders. Psychiatry Res 118:33–38

    Article  CAS  PubMed  Google Scholar 

  14. Gorwood P (2004) Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am J Pharmacogenomics 4:9–17

    Article  CAS  PubMed  Google Scholar 

  15. Bruce KR, Steiger H, Ng Ying Kin NM et al (2006) Reduced platelet [3H]paroxetine binding in anorexia nervosa: relationship to eating symptoms and personality pathology. Psychiatry Res 142:225–232

    Article  CAS  PubMed  Google Scholar 

  16. Ekman A, Sundblad-Elverfors C, Landén M et al (2006) Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa. Psychiatry Res 142:219–223

    Article  CAS  PubMed  Google Scholar 

  17. Bazzichi L, Giannaccini G, Betti L et al (2006) Alteration of serotonin transporter density and activity in fibromyalgia. Arthritis Res Ther 8:R99

    Article  PubMed  Google Scholar 

  18. Murphy DL, Lerner A, Rudnik G et al (2004) Serotonin transporter gene, genetic, genetic disorders pharmacogenetics. Mol Interv 4:109–123

    Article  CAS  PubMed  Google Scholar 

  19. Ramamoorthy S, Giovanetti E, Qian Y et al (1998) Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem 273:2458–2466

    Article  CAS  PubMed  Google Scholar 

  20. Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55

    Article  CAS  PubMed  Google Scholar 

  21. Marazziti D, Rossi A, Masala I et al (1999) Regulation of the platelet serotonin transporter by protein kinase C in the young and elderly. Biol Psychiatry 45:443–447

    Article  CAS  PubMed  Google Scholar 

  22. Jayanthi LD, Samuvel DJ, Blakely RD et al (2005) Evidence for biphasic effects of protein kinase C on serotonin transporter function, endocytosis, and phosphorylation. Mol Pharmacol 67:2077–2087

    Article  CAS  PubMed  Google Scholar 

  23. Carneiro AM, Blakely RD (2006) Serotonin, protein-kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 281:24769–24780

    Article  CAS  PubMed  Google Scholar 

  24. Awtry TL, Frank JG, Werling LL (2006) In vitro regulation of serotonin transporter activity by protein kinase A and nicotinic acetylcholine receptors in the prefrontal cortex of rats. Synapse 59:342–349

    Article  CAS  PubMed  Google Scholar 

  25. Ramamoorthy JD, Ramamoorthy S, Papapetropoulos A et al (1995) Cyclic AMP-independent up-regulation of the human serotonin transporter by staurosporine in choriocarcinoma cells. J Biol Chem 270:17189–17195

    Article  CAS  PubMed  Google Scholar 

  26. Prasad HC, Zhu CB, Mc Cauley JL et al (2005) Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci 102:11545–11550

    Article  CAS  PubMed  Google Scholar 

  27. Zhu CB, Steiner JA, Munn JL et al (2007) Rapid stimulation of pre-synaptic serotonin transport by A3 adenosine receptors. J Pharmacol Exp Ther 322:332–340

    Article  CAS  PubMed  Google Scholar 

  28. Ogura M, Morishima Y, Okumura M et al (1988) Functional and morphological differentiation induction of a human megakaryoblastic leucemia cell line (MEG-01 s) by phorbol diesthers. Blood 72:49–60

    CAS  PubMed  Google Scholar 

  29. Meacci E, Vasta V, Farnararo M et al (1996) Fructose 2, 6-bisphosphate metabolism during megakaryocytic differentiation of K562 and MEG-01 cells. Mol Cell Biochem 156:125–130

    Article  CAS  PubMed  Google Scholar 

  30. Franks DJ, Mroske C, Laneuville O (2001) A fluorescence microscopy method for quantifying the detection of prostaglandin endoperoxide H synthase-1 and CD-41 in MEG-01 cells. Biol Proced Online 3:54–63

    Article  CAS  PubMed  Google Scholar 

  31. Yang M, Srikiatkhachorn A, Anthony M et al (1996) Serotonin uptake, storage and metabolism in megakaryoblasts. Int J Hematol 63:137–142

    Article  CAS  PubMed  Google Scholar 

  32. Liu YS, Yang M (2006) The effect of 5-hydroxytryptamine on the regulation of megakaryocytopoiesis. Hematology 11:53–56

    Article  PubMed  Google Scholar 

  33. Yang M, Li K, Ng PC et al (2007) Promoting effects of serotonin on hematopoiesis: ex vivo expansion of cord blood CD34 + stem/progenitor cells, proliferation of bone marrow stromal cells, and antiapoptosis. Stem Cells 25:1800–1806

    Article  CAS  PubMed  Google Scholar 

  34. Arora RC, Meltzer HY (1981) A modified assay method for determining serotonin uptake in human platelets. Clin Chim Acta 112:225–233

    Article  CAS  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive assay for the quantitation of micrograms of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Perez J, Tardito D, Racagni G et al (2000) Altered Rap1 endogenous phosphorylation and levels in platelets from patients with bipolar disorder. J Psychiatr Res 34:99–104

    Article  CAS  PubMed  Google Scholar 

  37. Popoli M, Brunello N, Perez J et al (2000) Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem 74:21–33

    Article  CAS  PubMed  Google Scholar 

  38. Steiner JA, Carneiro AM, Blakely RD (2008) Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic 9:1393–1402

    Article  CAS  PubMed  Google Scholar 

  39. Newman ME et al (1994) Serotonin inhibition of adenylyl cyclase in human platelet membranes, relation to 5-HT1A receptor-mediated activity. Biochem Pharmacol 48:1677–1682

    Article  CAS  PubMed  Google Scholar 

  40. Massot O, Rousselle JC, Fillion MP et al (1999) 5-HT1B receptors: a novel target for lithium: possible involvement in mood disorders. Neuropsychopharmacol 21:530–541

    Article  CAS  Google Scholar 

  41. Dell’Osso L, Carmassi C, Palego L et al (2004) Serotonin-mediated cyclic AMP inhibitory pathway in platelets of patients affected by panic disorders. Neuropsychobiol 50:28–36

    Article  Google Scholar 

  42. Martini C, Trincavelli ML, Tuscano D et al (2004) Serotonin-phosphorylation of extracellular regulated kinases in platelets of patients with panic disorders versus controls. Neurochem Int 44:627–639

    Article  CAS  PubMed  Google Scholar 

  43. Iceta R, Aramayona JJ, Mesonero JE et al (2008) Regulation of the human serotonin transporter mediated by long-term action of serotonin in Caco2 cells. Acta Physiologica 193:57–65

    Article  CAS  PubMed  Google Scholar 

  44. Hranilovich D, Lesch KP, Ugarkovic D et al (1996) Identification of serotonin transporter mRNA in rat platelets. J Neural Transm 103:957–965

    Article  Google Scholar 

  45. Launey JM (1992) Platelet plasma membrane: characterization of the serotonin transporter. C R Seances Soc Biol Fil 186:198–205

    Google Scholar 

  46. Yang M, Srikiatkhachorn A, Anthony M et al (1996) Serotonin stimulates megakaryocytopoiesis via the 5-HT2 receptor. Blood Coagul Fibrinolysis 7:127–133

    Article  CAS  PubMed  Google Scholar 

  47. Schmid L, Giannaccini G, Fabbrini L et al (2007) Serotonin transporter expression in MEG-01 cell-line before and after phorbol esther treatment. Ital J Biochem 56:2.43

    Google Scholar 

  48. Jiang F, Jia Y, Cohen I (2002) Fibronectin and protein kinase C-mediated activation of ERK/MAPK are essential for proplateletlike formation. Blood 99:3579–3584

    Article  CAS  PubMed  Google Scholar 

  49. Tytgat GAM, Dekker-Van den Burg M, Voute PA et al (2002) Human megakaryocytes cultured in vitro accumulate serotonin but not meta-iodobenzylguanidine whereas platelets concentrate both. Exp Hematol 30:555–563

    Article  CAS  PubMed  Google Scholar 

  50. Hartwig JH, Italiano JE (2006) Cytoskeletal mechanisms for platelet production. Blood Cells Mol Dis 36:99–103

    Article  CAS  PubMed  Google Scholar 

  51. Dmitriev AD, Factor MI, Segal OL et al (2005) Western blot analysis of human and rat serotonin transporter in platelets and brain using site-specific antibodies: evidence that transporter undergoes endoproteolytic cleavage. Clin Chim Acta 356:76–94

    Article  CAS  PubMed  Google Scholar 

  52. Isakari Y, Sogo S, Ishida T et al (2009) Gene expression analysis during platelet-like particle production in phorbol myristate acetate-treated MEG-01 cells. Biol Pharm Bull 32:354–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work is supported by a grant of “Ministero dell’Istruzione dell’Università e della Ricerca” (M.I.U.R.) to Prof. G. Giannaccini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Giannaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannaccini, G., Betti, L., Palego, L. et al. Human Serotonin Transporter Expression During Megakaryocytic Differentiation of MEG-01 Cells. Neurochem Res 35, 628–635 (2010). https://doi.org/10.1007/s11064-009-0112-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0112-8

Keywords

Navigation