Skip to main content

Advertisement

Log in

Comparative Study on High Fat Diet-induced 4-Hydroxy-2E-nonenal Adducts in the Hippocampal CA1 Region of C57BL/6N and C3H/HeN Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated the influences of a high fat diet (HD) fed for 12 weeks, on lipid peroxidation and antioxidant enzyme using 4-hydroxy-2E-nonenal (HNE)-modified proteins (HNE-mp) and Cu,Zn-superoxide dismutase (SOD1) in the hippocampal CA1 region (CA1) in C57BL/6N and C3H/HeN mice. Body weights and body weight gains were significantly higher in HD fed C57BL/6N mice than in low fat diet (LD) fed C57BL/6N and LD or HD fed C3H/HeN mice. In the HD fed C57BL/6N and C3H/HeN mice, HNE-mp immunoreactivity and protein levels were much higher than in the LD fed C57BL/6N or C3H/HeN mice. In particular, HNE-mp immunoreactivity and protein levels in HD fed C57BL/6N mice was higher than that in the HD fed C3H/HeN mice. SOD1 immunoreaction was detected in the non-pyramidal cells of C57BL/6N mice, while in the C3H/HeN mice SOD1 immunoreaction was observed in CA1 pyramidal cells. The SOD1 immunoreactivity in the LD fed C57BL/6N and C3H/HeN mice was slightly, but not significantly decreased compared to that in the HD fed C57BL/6N and C3H/HeN mice, respectively. In addition, ionized calcium-binding adapter molecule 1 (Iba-1) immunoreactive microglia in the HD fed C57BL/6N showed hypertrophy of cytoplasm, which is the characteristics of activated microglia. These results suggest that HD fed C57BL/6N mice are more susceptible to lipid peroxidation in the CA1 than in LD fed C57BL/6N and LD or HD fed C3H/HeN mice without any differences of SOD1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778. doi:10.1073/pnas.91.23.10771

    Article  PubMed  CAS  Google Scholar 

  2. Kalmijn S (2000) Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J Nutr Health Aging 4:202–207

    PubMed  CAS  Google Scholar 

  3. Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P (2002) Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 75:767–772

    PubMed  CAS  Google Scholar 

  4. Olusi SO (2002) Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotective enzymes in humans. Int J Obes Relat Metab Disord 26:1159–1164. doi:10.1038/sj.ijo.0802066

    Article  PubMed  CAS  Google Scholar 

  5. Ozata M, Mergen M, Oktenli C et al (2002) Increased oxidative stress and hypozincemia in male obesity. Clin Biochem 35:627–631. doi:10.1016/S0009-9120(02)00363-6

    Article  PubMed  CAS  Google Scholar 

  6. Zhang X, Dong F, Ren J, Driscoll MJ, Culver B (2005) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191:318–325. doi:10.1016/j.expneurol.2004.10.011

    Article  PubMed  CAS  Google Scholar 

  7. Muller AP, Cammarota M, de Oliveira Dietrich M et al (2008) Different effect of high fat diet and physical exercise in the hippocampal signaling. Neurochem Res 33:880–885. doi:10.1007/s11064-007-9530-7

    Article  PubMed  CAS  Google Scholar 

  8. Becker ES, Mrgraf J, Türke V, Soeder U, Neumer S (2001) Obesity and mental illness in a representative sample of young women. Int J Obes Relat Metab Disord 25:S5–S9. doi:10.1038/sj.ijo.0801688

    Article  PubMed  Google Scholar 

  9. Chakravarthy MV, Booth FW (2004) Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 96:3–10. doi:10.1152/japplphysiol.00757.2003

    Article  PubMed  Google Scholar 

  10. Simon GE, von Korff M, Saunders K et al (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63:824–830. doi:10.1001/archpsyc.63.7.824

    Article  PubMed  Google Scholar 

  11. Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionally and risk for dietary relapse. Biol Psychiatry 61:1021–1029. doi:10.1016/j.biopsych.2006.09.032

    Article  PubMed  Google Scholar 

  12. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311. doi:10.1007/s00726-003-0018-8

    Article  PubMed  CAS  Google Scholar 

  13. McKracken E, Graham DI, Nilsen M, Stewart J, Nicoll JA, Horsburgh K (2004) 4-Hydroxynonenal immunoreactivity is increased in human hippocampus after global ischemia. Brain Pathol 11:414–421

    Article  Google Scholar 

  14. Miyata T, Van Ypersele De Strihou C, Kurokawa K, Baynes JW (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of carbonyl stress in long-term uremic complications. Kidney Int 55:389–399. doi:10.1046/j.1523-1755.1999.00302.x

    Article  PubMed  CAS  Google Scholar 

  15. Lauderback CM, Hackett JM, Huang FF et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1–42. J Neurochem 78:413–416. doi:10.1046/j.1471-4159.2001.00451.x

    Article  PubMed  CAS  Google Scholar 

  16. Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373. doi:10.1161/01.ATV.0000133604.20182.cf

    Article  PubMed  CAS  Google Scholar 

  17. Hwang IK, Eum WS, Yoo KY et al (2005) Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu, Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic Biol Med 39:392–402. doi:10.1016/j.freeradbiomed.2005.03.027

    Article  PubMed  CAS  Google Scholar 

  18. Schreyer SA, Wilson DL, LeBoeuf RC (1998) C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis 136:17–24. doi:10.1016/S0021-9150(97)00165-2

    Article  PubMed  CAS  Google Scholar 

  19. Black BL, Croom J, Eisen EJ, Petro AE, Edwards CL, Surwit RS (1998) Differential effects of fat and sucrose on body composition in A/J and C57BL/6 mice. Metabolism 47:1354–1359. doi:10.1016/S0026-0495(98)90304-3

    Article  PubMed  CAS  Google Scholar 

  20. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB et al (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998. doi:10.2337/db06-1595

    Article  PubMed  CAS  Google Scholar 

  21. Poggi M, Bastelica D, Gual P et al (2007) C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50:1267–1276. doi:10.1007/s00125-007-0654-8

    Article  PubMed  CAS  Google Scholar 

  22. West DB, Waguespack J, McCollister S (1995) Dietary obesity in the mouse: interaction of strain with diet composition. Am J Physiol Regul Integr Comp Physiol 268:R658–R665

    CAS  Google Scholar 

  23. Gregoire FM, Zhang Q, Smith SJ et al (2002) Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICM-1-deficient mice. Am J Physiol Endocrinol Metab 282:E703–E713

    PubMed  CAS  Google Scholar 

  24. Hwang IK, Kim IY, Kim DW, et al (2008) Strain specific differences in cell proliferation and differentiation in the dentate gyrus of C57BL/6N and C3H/HeN mice fed a high fat diet. Brain Res. doi:10.1016/j.brainres.2008.08.024

  25. Braddon FE, Rodgers B, Wadsworth ME, Davies JM (1996) Onset of obesity in a 36 year birth cohort study. BMJ 293:299–303

    Article  Google Scholar 

  26. Mokdad AH, Ford ES, Bowman BA et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79. doi:10.1001/jama.289.1.76

    Article  PubMed  Google Scholar 

  27. Esposito K, Pontillo A, Di Palo C et al (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289:1799–1804. doi:10.1001/jama.289.14.1799

    Article  PubMed  CAS  Google Scholar 

  28. Park JY, Seong JK, Paik YK (2004) Proteomic analysis of diet-induced hypercholesterolemic mice. Proteomics 4:514–523. doi:10.1002/pmic.200300623

    Article  PubMed  CAS  Google Scholar 

  29. Reagan LP, Magariños AM, Yee DK et al (2000) Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Res 862:292–300. doi:10.1016/S0006-8993(00)02212-5

    Article  PubMed  CAS  Google Scholar 

  30. Ninfali P, Ditroilo M, Capellacci S, Biagiotti E (2001) Rabbit brain glucose-6-phosphate dehydrogenase: biochemical properties and inactivation by free radicals and 4-hydroxy-2-nonenal. NeuroReport 12:4149–4153. doi:10.1097/00001756-200112210-00057

    Article  PubMed  CAS  Google Scholar 

  31. Ishii T, Tatsuda E, Kumazawa S, Nakayama T, Uchida K (2003) Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 42:3474–3480. doi:10.1021/bi027172o

    Article  PubMed  CAS  Google Scholar 

  32. Grillo CA, Piroli GG, Rosell DR, Hoskin EK, Mcewen BS, Reagan LP (2003) Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience 121:133–140. doi:10.1016/S0306-4522(03)00343-9

    Article  PubMed  CAS  Google Scholar 

  33. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gómez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803–814. doi:10.1016/S0306-4522(02)00123-9

    Article  PubMed  CAS  Google Scholar 

  34. Kaizer RR, da Silva AC, Morsch VM, Corrêa MC, Schetinger MR (2004) Diet-induced changes in AChE activity after long-term exposure. Neurochem Res 29:2251–2255. doi:10.1007/s11064-004-7033-3

    Article  PubMed  CAS  Google Scholar 

  35. South T, Huang XF (2008) High-fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 33:598–605. doi:10.1007/s11064-007-9483-x

    Article  PubMed  CAS  Google Scholar 

  36. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. doi:10.1016/0166-2236(96)10049-7

    Article  PubMed  CAS  Google Scholar 

  37. Thirumangalakudi L, Prakasam A, Zhang R et al (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475–485. doi:10.1111/j.1471-4159.2008.05415.x

    Article  PubMed  CAS  Google Scholar 

  38. Choi JY, Jang EH, Park CS, Kang JH (2005) Enhanced susceptibility to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med 38:806–816. doi:10.1016/j.freeradbiomed.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  39. Hong MY, Chapkin RS, Barhoumi R et al (2002) Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis 23:1919–1925. doi:10.1093/carcin/23.11.1919

    Article  PubMed  CAS  Google Scholar 

  40. Roberts CK, Vaziri NS, Ni Z, Barnard RJ (2002) Correction of long-term diet-induced hypertension and nitrotyrosine accumulation by diet modification. Atherosclerosis 163:321–327. doi:10.1016/S0021-9150(02)00010-2

    Article  PubMed  CAS  Google Scholar 

  41. Stokes KY, Cooper D, Tailor A, Granger DN (2002) Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med 33:1026–1036. doi:10.1016/S0891-5849(02)01015-8

    Article  PubMed  CAS  Google Scholar 

  42. Ding T, Yao Y, Praticò D (2005) Increase in peripheral oxidative stress during hypercholesterolemia is not reflected in the central nervous system: evidence from two mouse models. Neurochem Int 46:435–439. doi:10.1016/j.neuint.2004.12.009

    Article  PubMed  CAS  Google Scholar 

  43. Souza CG, Moreira JD, Siqueira IR et al (2007) Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior. Life Sci 81:198–203. doi:10.1016/j.lfs.2007.05.001

    Article  PubMed  CAS  Google Scholar 

  44. Huang WC, Juang SW, Liu IM, Chi TC, Cheng JT (1999) Changes of superoxide dismutase gene expression and activity in the brain of streptozotocin-induced diabetic rats. Neurosci Lett 275:25–28. doi:10.1016/S0304-3940(99)00704-1

    Article  PubMed  CAS  Google Scholar 

  45. Kumar JSS, Menon VP (1993) Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 42:1435–1439. doi:10.1016/0026-0495(93)90195-T

    Article  PubMed  CAS  Google Scholar 

  46. Makar TK, Rimpel-Lamhaouar K, Abraham DG, Gokhale VS, Cooper AJL (1995) Antioxidant defense systems in the brains of type II diabetic mice. J Neurochem 65:287–291

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Oriental Medicine R&D Project, Ministry of Health and Welfare, Republic of Korea (HMP-00-CO-06-0006) and was also supported by the Grants for Medical Research Center for Chronic Metabolic Diseases, Yonsei University College of Medicine, from Korean Ministry of Health and Welfare to Seong JK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeo Sung Yoon or Je Kyung Seong.

Additional information

In Koo Hwang and Il Yong Kim have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Kim, I.Y., Kim, Y.N. et al. Comparative Study on High Fat Diet-induced 4-Hydroxy-2E-nonenal Adducts in the Hippocampal CA1 Region of C57BL/6N and C3H/HeN Mice. Neurochem Res 34, 964–972 (2009). https://doi.org/10.1007/s11064-008-9846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9846-y

Keywords

Navigation