Skip to main content

Advertisement

Log in

Quinolinate-induced Rat Striatal Excitotoxicity Impairs Endoplasmic Reticulum Ca2+-ATPase Function

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excessive activation of NMDA glutamate receptors and the resulting loss of intracellular Ca2+ homeostasis may be lethal (excitotoxic) to neurons. Such excitotoxicity can be induced in vivo by intrastriatal infusion of quinolinate, as this substance selectively activates NMDA receptors. The aim of the present research was to investigate whether the in vivo treatment of striatal tissue with quinolinate would lead to an early impairment of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity or mitochondrial Ca2+ sequestration, two intracellular mechanisms involved in Ca2+ homeostasis and signaling. Sodium quinolinate was infused intrastriatally into adult rats, and 6 h later the brains were removed and the corpora striata dissected. At this time point, striatal sections stained with Fluoro-Jade, a cellular marker of cell death, showed initial signs of neuronal degeneration. In addition, SERCA activity decreased 39% in relation to the activity observed in the control striata. A corresponding decrease of the same magnitude in 45Ca2+ uptake by striatal microsomes was also found in the treated striata. Western blot analysis did not indicate any decrease in SERCA levels in striatal tissue after quinolinate infusion. Mitochondrial Ca2+ sequestration was still preserved in quinolinate-treated striatal tissue when the assay was carried out in the presence of physiological concentrations of ATP and Mg2+. These results suggest that impairment of the SERCA function may be an early event in excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kostyuk P, Verkhratsky A (1994) Calcium stores in neurons and glia. Neuroscience 63:381–404

    Article  PubMed  CAS  Google Scholar 

  2. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874

    Article  PubMed  CAS  Google Scholar 

  3. Gnegy ME (2000) Ca2+/calmodulin signaling in NMDA-induced synaptic plasticity. Crit Rev Neurobiol 14:91–129

    PubMed  CAS  Google Scholar 

  4. West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA 98:11024–11031

    Article  PubMed  CAS  Google Scholar 

  5. Tzounopoulos T, Stackman R (2003) Enhancing synaptic plasticity and memory: a role for small-conductance Ca2+-activated K+ channels. Neuroscientist 9:434–439

    Article  PubMed  CAS  Google Scholar 

  6. Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104

    PubMed  CAS  Google Scholar 

  7. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  8. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–A14

    PubMed  CAS  Google Scholar 

  9. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–937

    Article  PubMed  CAS  Google Scholar 

  10. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595

    Article  PubMed  CAS  Google Scholar 

  11. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  PubMed  CAS  Google Scholar 

  12. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  13. Paschen W (2003) Mechanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments. Cell Calcium 34:305–310

    Article  PubMed  CAS  Google Scholar 

  14. Araujo IM, Carvalho CM (2005) Role of nitric oxide and calpain activation in neuronal death and survival. Curr Drug Targets CNS Neurol Disord 4:319–324

    Article  PubMed  CAS  Google Scholar 

  15. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122

    Article  PubMed  CAS  Google Scholar 

  16. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  17. Nicholls DG, Vesce S, Kirk L, Chalmers S (2003) Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium 34:407–424

    Article  PubMed  CAS  Google Scholar 

  18. Mata AM, Sepulveda MR (2005) Calcium pumps in the central nervous system. Brain Res Brain Res Rev 49:398–405

    Article  PubMed  CAS  Google Scholar 

  19. Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38:161–169

    Article  PubMed  CAS  Google Scholar 

  20. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    Article  PubMed  CAS  Google Scholar 

  21. Khodorov BI, Fayuk DA, Koshelev SG, Vergun OV, Pinelis VG, Vinskaya NP, Storozhevykh TP, Arsenyeva EN, Khaspekov LG, Lyzhin AP, Isaev N, Victorov IV, Dubinsky JM (1996) Effect of a prolonged glutamate challenge on plasmalemmal calcium permeability in mammalian central neurones. Mn2+ as a tool to study calcium influx pathways. Int J Neurosci 88:215–241

    Article  PubMed  CAS  Google Scholar 

  22. Pereira C, Ferreira C, Carvalho C, Oliveira C (1996) Contribution of plasma membrane and endoplasmic reticulum Ca2+-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress. Brain Res 713:269–277

    Article  PubMed  CAS  Google Scholar 

  23. Parsons JT, Churn SB, DeLorenzo RJ (1999) Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg2+/Ca2+ ATPase. Brain Res 834:32–41

    Article  PubMed  CAS  Google Scholar 

  24. Lehotsky J, Kaplan P, Babusikova E, Strapkova A, Murin R (2003) Molecular pathways of endoplasmic reticulum dysfunctions: possible cause of cell death in the nervous system. Physiol Res 52:269–274

    PubMed  CAS  Google Scholar 

  25. Pottorf WJ 2nd, Johanns TM, Derrington SM, Strehler EE, Enyedi A, Thayer SA (2006) Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J Neurochem 98:1646–1656

    Article  PubMed  CAS  Google Scholar 

  26. Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16:6125–6133

    PubMed  CAS  Google Scholar 

  27. Wang GJ, Thayer SA (1996) Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol 76:1611–1621

    PubMed  CAS  Google Scholar 

  28. Castilho RF, Hansson O, Ward MW, Budd SL, Nicholls DG (1998) Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 18:10277–10286

    PubMed  CAS  Google Scholar 

  29. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373

    Article  PubMed  CAS  Google Scholar 

  30. Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72:411–412

    Article  PubMed  CAS  Google Scholar 

  31. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    PubMed  CAS  Google Scholar 

  32. Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 8:247–265

    Article  Google Scholar 

  33. Maia JCC, Gomes SL, Juliani MH (1983) Preparation of (gamma-32P)- and (alpha-32P)-nucleoside triphosphates with high specific activity. In: Morel CM (ed) Genes and antigens of parasites: a laboratory manual. Fundação Oswaldo Cruz, Rio de Janeiro, pp 139–149

  34. Foster AC, Gill R, Woodruff GN (1988) Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J Neurosci 8:4745–4754

    PubMed  CAS  Google Scholar 

  35. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  PubMed  CAS  Google Scholar 

  36. Supattapone S, Danoff SK, Theibert A, Joseph SK, Steiner J, Snyder SH (1988) Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci USA 85:8747–8750

    Article  PubMed  CAS  Google Scholar 

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  38. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752–758

    PubMed  CAS  Google Scholar 

  39. Watson WD, Facchina SL, Grimaldi M, Verma A (2003) Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors identify a novel calcium pool in the central nervous system. J Neurochem 87:30–43

    Article  PubMed  CAS  Google Scholar 

  40. Souza dos Santos P, Saraiva DF, Ferraz da Costa DC, Scofano HM, de Carvalho-Alves PC (2007) Trifluoperazine protects brain plasma membrane Ca2+-ATPase from oxidative damaging. Exp Brain Res 177:347–357

    Article  PubMed  CAS  Google Scholar 

  41. Freitas AJ, Rocha JB, Wolosker H, Souza DO (1996) Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes. Brain Res 738:257–264

    Article  PubMed  CAS  Google Scholar 

  42. Ramos RC, de Meis L (1999) Glucose 6-phosphate and fructose 1,6-bisphosphate can be used as ATP-regenerating systems by cerebellum Ca2+-transport ATPase. J Neurochem 72:81–86

    Article  PubMed  CAS  Google Scholar 

  43. Racay P, Kaplan P, Lehotsky J (2000) Ischemia-induced inhibition of active calcium transport into gerbil brain microsomes: effect of anesthetics and models of ischemia. Neurochem Res 25:285–292

    Article  PubMed  CAS  Google Scholar 

  44. Scarpa A (1979) Measurements of cation transport with metallochromic indicators. Methods Enzymol 56:301–338

    Article  PubMed  CAS  Google Scholar 

  45. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  46. Fernandes AM, Maurer-Morelli CV, Campos CB, Mello ML, Castilho RF, Langone F (2004) Fluoro-Jade, but not Fluoro-Jade B, stains non-degenerating cells in brain and retina of embryonic and neonatal rats. Brain Res 1029:24–33

    Article  PubMed  CAS  Google Scholar 

  47. Emgard M, Karlsson J, Hansson O, Brundin P (1999) Patterns of cell death and dopaminergic neuron survival in intrastriatal nigral grafts. Exp Neurol 160:279–288

    Article  PubMed  CAS  Google Scholar 

  48. Grubmeyer C, Penefsky HS (1981) Regulation of steady state filling in sarcoplasmic reticulum. J Biol Chem 264:5929–5936

    Google Scholar 

  49. Chiesi M, Inesi G (1979) The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum. J Biol Chem 254:10370–10377

    PubMed  CAS  Google Scholar 

  50. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    PubMed  CAS  Google Scholar 

  51. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  52. Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    Article  PubMed  CAS  Google Scholar 

  53. Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  PubMed  CAS  Google Scholar 

  54. Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P (1999) Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 96:8727–8732

    Article  PubMed  CAS  Google Scholar 

  55. Gouhier C, Chalon S, Venier-Julienne MC, Bodard S, Benoit J, Besnard J, Guilloteau D (2000) Neuroprotection of nerve growth factor-loaded microspheres on the D2 dopaminergic receptor positive-striatal neurones in quinolinic acid-lesioned rats: a quantitative autoradiographic assessment with iodobenzamide. Neurosci Lett 288:71–75

    Article  PubMed  CAS  Google Scholar 

  56. Perez-Navarro E, Akerud P, Marco S, Canals JM, Tolosa E, Arenas E, Alberch J (2000) Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington’s disease. Neuroscience 98:89–96

    Article  PubMed  CAS  Google Scholar 

  57. Castilho RF, Carvalho-Alves PC, Vercesi AE, Ferreira ST (1996) Oxidative damage to sarcoplasmic reticulum Ca2+-pump induced by Fe2+/H2O2/ascorbate is not mediated by lipid peroxidation or thiol oxidation and leads to protein fragmentation. Mol Cell Biochem 159:105–114

    Article  PubMed  CAS  Google Scholar 

  58. Moreau VH, Castilho RF, Ferreira ST, Carvalho-Alves PC (1998) Oxidative damage to sarcoplasmic reticulum Ca2+-ATPase at submicromolar iron concentrations: evidence for metal-catalyzed oxidation. Free Radic Biol Med 25:554–560

    Article  PubMed  CAS  Google Scholar 

  59. Zaidi A, Michaelis ML (1999) Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radic Biol Med 27:810–821

    Article  PubMed  CAS  Google Scholar 

  60. Racay P, Kaplan P, Mezesova V, Lehotsky J (1997) Lipid peroxidation both inhibits Ca2+-ATPase and increases Ca2+ permeability of endoplasmic reticulum membrane. Biochem Mol Biol Int 41:647–655

    PubMed  CAS  Google Scholar 

  61. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  62. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  63. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    Article  PubMed  CAS  Google Scholar 

  64. Sattler R, Xiong Z, Lu WY, MacDonald JF, Tymianski M (2000) Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci 20:22–33

    PubMed  CAS  Google Scholar 

  65. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298:846–850

    Article  PubMed  CAS  Google Scholar 

  66. Nicholls DG, Budd SL (1998) Mitochondria and neuronal glutamate excitotoxicity. Biochim Biophys Acta 1366:97–112

    Article  PubMed  CAS  Google Scholar 

  67. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 22:360–364

    Article  CAS  Google Scholar 

  68. Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4:149–177

    Article  PubMed  CAS  Google Scholar 

  69. Larsen GA, Skjellegrind HK, Berg-Johnsen J, Moe MC, Vinje ML (2006) Depolarization of mitochondria in isolated CA1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity. Brain Res 13:153–160

    Article  CAS  Google Scholar 

  70. Ward MW, Rego AC, Frenguelli BG, Nicholls DG (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 19:7208–7219

    Google Scholar 

  71. Saris NE, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70:187–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Edilene S. Siqueira and Elisangela J. Silva for technical assistance and Professor Helena M. Scofano for providing the laboratory facilities for many of the experiments described here. This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundo de Apoio ao Ensino, Pesquisa e Extensão (FAEPEX-UNICAMP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). A.M.A.P. Fernandes was supported by FAPESP and CNPq fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. A. P. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, A.M.A.P., Landeira-Fernandez, A.M., Souza-Santos, P. et al. Quinolinate-induced Rat Striatal Excitotoxicity Impairs Endoplasmic Reticulum Ca2+-ATPase Function. Neurochem Res 33, 1749–1758 (2008). https://doi.org/10.1007/s11064-008-9619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9619-7

Keywords

Navigation