Skip to main content
Log in

Repeated Electroconvulsive Shock Induces Changes in High-affinity [3H]-ouabain Binding to Rat Striatal Membranes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Repeated electroconvulsive shock is an effective treatment for affective disorders. Striatum, hippocampus and brainstem are involved in affective disorders. Sodium–potassium/ATPase is of paramount importance for the proper functioning of the brain and its involvement in the affective disorders has been claimed for a long time. Sodium–potassium/ATPase has an extracellular regulatory binding site to which cardiotonic glycosides, such as ouabain, bind to, thus regulating the activity of the enzyme. Endogenous “ouabain-like” substances exist in the brain and their actions on the sodium–potassium/ATPase resemble ouabain biological properties. The aim of this work was to determine if electroconvulsive shock (ECS) would induce changes in the high-affinity binding of ouabain to the sodium–potassium/ATPase from rat brain regions. Adult, male Wistar rats received one (ECS×1 group) or seven electroshocks (ECS×7 group) delivered daily through ear-clips electrodes. Control rats received the same manipulations; however, no current was delivered through the electrodes (SHAM×1 and SHAM×7 groups). All groups were sacrificed 24 h after the last ECS session. The B max and K D of high-affinity [3H]-ouabain binding were determined in crude membrane preparations from the striatum, hippocampus and brainstem. The results obtained showed a statistically significant increase in the affinity of [3H]-ouabain (lower K D) to striatal membranes in those rats receiving seven ECS. In the striatum there was no change in the K D after one ECS; as well as there was no change in the B max after a single or seven ECS. High-affinity [3H]-ouabain binding to hippocampus and brainstem did not reveal any significant differences either in K D or B max after one or seven ECS. The increased affinity of ouabain to the striatal sodium–potassium/ATPase induced by repeated ECS suggests an increased interaction in vivo of the endogenous “ouabain-like” substances with the enzyme and the involvement of the extracellular regulatory allosteric ouabain binding site in the striatal sodium–potassium/ATPase in the effects of electroconvulsive shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sackeim HA, Devanand DP, Nobler MS (1995) Electroconvulsive therapy. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The fourth generation of progress. Raven Press, New York, pp 1123–1141

    Google Scholar 

  2. Fossati P, Radtchenlo A, Boyer P (2004) Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 14:S503–S510

    Article  PubMed  CAS  Google Scholar 

  3. Rogers MA, Bradshaw JL, Pantelis C, Phillips JG (1998) Frontostriatal deficits in unipolar depression. Brain Res Bull 47:297–310

    Article  PubMed  CAS  Google Scholar 

  4. Strakowski SM, DelBelo MP, Adler C, Cecil KM, Sax KW (2000) Neuroimaging in bipolar disorder. Bipolar Disord 2:148–164

    Article  PubMed  CAS  Google Scholar 

  5. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  6. Horisberger JD, Lemas V, Kraehenbühl JP, Rossier BC (1991) Structure-function relationship of Na,K-ATPase. Annu Rev Physiol 53:565–584

    Article  PubMed  CAS  Google Scholar 

  7. Béguin P, Wang X, Firsov D, Puoti A, Claeys D, Horisberger JD, Geering K (1997) The γ subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J 16:4250–4260

    Article  PubMed  Google Scholar 

  8. Jamme I, Barbey O, Trouvé P, Charlemagne D, Maixent JM, Mackenzie ET, Pellerin L, Nouvelot A (1999) Focal cerebral ischaemia induces a decrease in activity and a shift in ouabain affinity of Na+, K+-ATPase isoforms without modifications in mRNA and protein expression. Brain Res 819:132–142

    Article  PubMed  CAS  Google Scholar 

  9. Rodríguez de Lores Arnaiz G, Reinés A, Herbin T, Peña C (1998) Na+, K+-ATPase interaction with a brain endogenous inhibitor (endobain E). Neurochem Int 33:425–433

    Article  Google Scholar 

  10. Gao J, Wymore RS, Wang Y, Gaudette GR, Krukenkamp IB, Cohen I, Mathias RT (2002) Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J Gen Physiol 119:297–312

    Article  PubMed  CAS  Google Scholar 

  11. Rodríguez de Lores Arnaiz G (2000) How many endobains are there? Neurochem Res 25:1421–1430

    Article  Google Scholar 

  12. Lichtstein D, Rosen H (2001) Endogenous digitalis-like Na+, K+-ATPase inhibitors, and brain function. Neurochem Res 26:971–978

    Article  PubMed  CAS  Google Scholar 

  13. Bagrov AY, Bagrov YY, Fedorova OV, Kashkin VA, Patkina NA, Zvartau EE (2002) Endogenous digitalis-like ligands of the sodium pump: possible involvement in mood control and ethanol addiction. Eur Neuropsychopharmacol 12:1–12

    Article  PubMed  CAS  Google Scholar 

  14. Westerink BH, Damsma G, de Vries JB (1989) Effect of ouabain applied by intrastriatal microdialysis on the in vivo release of dopamine, acetylcholine, and amino acids in the brain of conscious rats. J Neurochem 42:705–712

    Article  Google Scholar 

  15. Bersier MG, Miksztowicz V, Peña C, Rodríguez de Lores Arnaiz G (2005) Modulation of aspatate release by ascorbic acid and endobain E, an endogenous Na+, K+-ATPase inhibitor. Neurochem Res 30:479–486

    Article  PubMed  CAS  Google Scholar 

  16. Vatta M, Peña C, Fernández BE, Rodríguez de Lores Arnaiz G (2004) Endobain E, a brain Na+, K+-ATPase inhibitor, decreases norepinephrine uptake in rat hypothalamus. Life Sci 76:359–365

    Article  PubMed  CAS  Google Scholar 

  17. Vatta M, Peña C, Fernández B, Rodríguez de Lores Arnaiz G (1999) A brain Na+, K+-ATPase inhibitor (endobain E) enhances norepinephrine release in rat hypothalamus. Neuroscience 90:573–579

    Article  PubMed  CAS  Google Scholar 

  18. Sirinathsinghji DJ, Heavbens RP, Sikdar SK (1988) In vivo studies on the dopamine re-uptake mechanism in the striatum of the rat: effects of benztropine, sodium and ouabain. Brain Res 438:399–403

    Article  PubMed  CAS  Google Scholar 

  19. Rodríguez de Lores Arnaiz G, Schneider P, Peña C (1999) Brain soluble fractions which modulate Na+, K+-ATPase activity likewise modify muscarinic receptor. Neurochem Res 24:1417–1422

    Article  Google Scholar 

  20. Meyer EM, Cooper JR (1981) Correlations between Na+-K+ ATPase activity and acetylcholine release in rat cortical synaptosomes. J Neurochem 36:467:475

    Article  PubMed  CAS  Google Scholar 

  21. Xie Z, Cai T (2003) Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168

    Article  PubMed  CAS  Google Scholar 

  22. Lopina OD (2001) Interaction of Na,K-ATPase catalytic subunit with cellular proteins and other endogenous regulators. Biochemistry (Mosc) 66:1122–1131

    Google Scholar 

  23. Looney SW, El-Mallakh RS (1997) Meta-analysis of erythrocyte Na,K-ATPase activity in bipolar illness. Depress Anxiety 5:53–65

    Google Scholar 

  24. Christo PJ, El-Mallakh RS (1993) Possible role of endogenous ouabain-like compounds in the pathophysiology of bipolar illness. Med Hypotheses 41:378–383

    Article  PubMed  CAS  Google Scholar 

  25. Hauger R, Luu HMD, Meyer DK, Goodwin FK, Paul SM (1985) Characterization of “high-affinity” [3H]ouabain binding in the rat central nervous system. J Neurochem 44:1709–1715

    Article  PubMed  CAS  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  27. Lerer B (1987) Neurochemical and other biological consequences of ECT: implications for the pathogenesis and treatment of affective disorders. In: Meltzer HY (ed) Psychopharmacology: The third generation of progress. Raven Press, New York, pp. 577–588

    Google Scholar 

  28. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Progr Neurobiol 69:375–390

    Article  CAS  Google Scholar 

  29. Calabresi P, De Murtas M, Bernardi G (1997) The neostriatum beyond the motor function: experimental and clinical evidence. Neuroscience 78:39–60

    Article  PubMed  CAS  Google Scholar 

  30. De Murtas M, Tatarelli R, Girardi P, Vicini S (2004) Repeated electroconvulsive stimulation impairs long-term depression in the neostriatum. Biol Psychiatry 55:472–476

    Article  PubMed  Google Scholar 

  31. Yoshida K, Higushi H, Kamata M, Yoshimoto M, Shimiau T, Hishikawa Y (1997) Dopamine releasing response in rat striatum to single and repeated electroconvulsive shock treatment. Prog Neuro-Psychopharmacol Biol Psychiat 21:707–715

    Article  CAS  Google Scholar 

  32. Reid IC, Stewart CA (1997) Seizures, memory and synaptic plasticity. Seizure 6:351–359

    Article  PubMed  CAS  Google Scholar 

  33. Pekovic S, Nedeljkovic N, Nikezic G, Horvat A, Stojiljkovic M, Rakic L, Martinovic JV (1997) Biochemical characterization of the hippocampal and striatal Na,K-ATPase reveals striking differences in kinetics properties. Gen Physiol Biophys 16:227–240

    PubMed  CAS  Google Scholar 

  34. Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na++K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347:386–388

    Article  PubMed  CAS  Google Scholar 

  35. Nishi A, Fisone G, Snyder GL, Dulubova I, Aperia A, Nairn AC, Greengard P (1999) Regulation of Na+,K+-ATPase isoforms in rat neostriatum by dopamine and protein kinase C. J Neurochem 73:1492–1501

    Article  PubMed  CAS  Google Scholar 

  36. Akagawa K, Tsukada Y (1979) Presence and characteristics of catecholamine-sensitive Na-K ATPase in rat striatum. J Neurochem 32:269–271

    Article  PubMed  CAS  Google Scholar 

  37. Kamata K, Kamata M, Ino H, Kameyama T (1980) Change in catecholamine-sensitive Na+,K+-ATPase activity in the rat striatum microsomes following electrolytic or 6-hydroxydopamine-induced lesions of dopaminergic neurons. Jpn J Pharmacol 30:401–404

    Article  PubMed  CAS  Google Scholar 

  38. van der Krogt JA, Belfroid RDM (1980) Characterization and localization of catecholamine-susceptible Na-K ATPase activity of rat striatum: studies using catecholamine receptor (ant)agonists and lesion techniques. Biochem Pharmacol 29:857–858

    Article  PubMed  Google Scholar 

  39. Passarelli F, Carmenini E, Calo L, Pontieri FE (1997) Dopamine release in striatal slices of rats previously submitted to electroconvulsive shock. Brain Res 774:239–241

    Article  PubMed  CAS  Google Scholar 

  40. Barkai AI, Durkin M, Nelson HD (1990) Localized alterations of dopamine receptor binding in rat brain by repeated electroconvulsive shock: an autoradiographic study. Brain Res 529:208–213

    Article  PubMed  CAS  Google Scholar 

  41. Smith S, Lindefors N, Hurd Y, Sharp T (1995) Electroconvulsive shock increases dopamine D1 and D2 receptor mRNA in the nucleus accumben of the rat. Psychopharmacology 120:333–340

    Article  PubMed  CAS  Google Scholar 

  42. Newman ME, Lerer B (1989) Effects of chronic electroconvulsive shock on D1 and D2 dopamine receptor-mediated activity of adenylate cyclase in homogenates of striatum and limbic forebrain of rat. Neuropharmacology 28:787–790

    Article  PubMed  CAS  Google Scholar 

  43. Li S, Wattenberg EV (1998) Differential activation of mitogen-activated protein kinase by palytoxin and ouabain, two ligands for the Na+,K+-ATPase. Toxicol Appl Pharmacol 151:377–384

    Article  PubMed  CAS  Google Scholar 

  44. Oh SW, Ahn YM, Kang UG, Kim YS, Park JB (1999) Differential activation of c-Jun N-terminal protein kinase and p38 in rat hippocampus and cerebellum after electroconvulsive shock. Neurosci Lett 271:101–104

    Article  PubMed  CAS  Google Scholar 

  45. Brecht S, Simler S, Vergnes M, Mielke K, Marescaux C, Herdegen T (1999) Repetitive electroconvulsive seizures induce activity of c-Jun N-terminal kinase and compartment-specific desensitization of c-Jun phosphorylation in the rat brain. Brain Res Mol Brain Res 68:101–108

    Article  PubMed  CAS  Google Scholar 

  46. Mishra OP, Delivoria-Papadopoulos M, Cahillane G, Wagerle LC (1989) Lipid peroxidation as the mechanism of modification of the affinity of the Na+,K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem Res 14:845–851

    Article  PubMed  CAS  Google Scholar 

  47. Barichello T, Bonato F, Agostinho FR, Reinke A, Moreira JCF, Dal-Pizzol F, Izquierdo I, Quevedo J (2004) Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res 29:1749–1753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marcela I.F. Venditti for her help in the preparation of this manuscript. Magda Bignotto was a recipient of a fellowship from Coordenação de Pessoal de Nível Superior (CAPES). This work was funded by Associação Fundo de Incentivo à Psicofarmacologia (AFIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Campana Benedito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bignotto, M., Benedito, M.A.C. Repeated Electroconvulsive Shock Induces Changes in High-affinity [3H]-ouabain Binding to Rat Striatal Membranes. Neurochem Res 31, 515–521 (2006). https://doi.org/10.1007/s11064-006-9046-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9046-6

Keywords

Navigation