Skip to main content
Log in

Regulatory Effects of Stevia Rebaudiana on NADPH Oxidase-Related Manifestations of Oxidative Stress in Diabetic Rats with Spinal Cord Injury

  • Published:
Neurophysiology Aims and scope

For the first time, a method for isolation and purification of Nox isoforms (Nox1+Nox2), as well as of O2-producing stable associates of Nox and lipoprotein-containing NADPH isoforms (NCL associates), from the membranes of cells and intracellular formations of the spinal cord (SC) and bone marrow (BM) of albino rats was developed, and the respective estimates were obtained. The effects of treatment with a phytopreparation of Stevia (Stevia rebaudiana Bertoni) leaves in this pathology were studied in a model of fructose-induced type II diabetes (FID) in rats with spinal cord injury (SCI). Due to its antioxidant activity, Stevia exhibited a clear membrane-stabilizing effect in rats with FID and SC hemisection. In such experimental animals, the qualitative and quantitative indices for Nox isoforms and NCL associates from the SC and BM membranes showed clear trends toward normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. M. Simonyan, G. M. Simonyan, and M. A. Simonyan, “Method for isolation of NADPH oxidase (Nox) isoforms from biosystems,” License of invention N2828. Intellectual ownership of the agency of RA, Yerevan (2014).

  2. N. D. Vaziri, Y. S. Lee, C. Y. Lin, et al., “NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury,” Brain Res., 995, No. 1, 76–83 (2004); doi: https://doi.org/10.1016/j.brainres.2003.09.056.

    Article  CAS  PubMed  Google Scholar 

  3. R. E. von Leden, G. Khayrullina, K. E. Moritz, and K. R. Byrnes, “Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middleaged rodent model of spinal cord injury,” J. Neuroinflammation, 14, No. 1, 161 (2017); doi: https://doi.org/10.1186/s12974-017-0933-3.

  4. S. Bermudez, G. Khayrullina, Y. Zhao, and K. R. Byrnes, “NADPH oxidase isoform expression is temporally regulated and may contribute to microglial/macrophage polarization after spinal cord injury,” Mol. Cell. Neurosci., 77, 53–64 (2016); doi: https://doi.org/10.1016/j.mcn.2016.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. J. Cooney, Y. Zhao, and K. R. Byrnes, “Characterization of the expression and inflammatory activity of NADPH oxidase after spinal cord injury,” Free Radic. Res., 48, No. 8, 929–939 (2014); doi: https://doi.org/10.3109/10715762.2014.927578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K. R. Byrnes, P. M. Washington, S. M. Knoblach, et al., “Delayed inflammatory mRNA and protein expression after spinal cord injury,” J. Neuroinflammation, 8, 130 (2011); doi: https://doi.org/10.1186/1742-2094-8-130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Zhang, W. M. Bailey, A. L. McVicar, and J. C. Gensel, “Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury,” Neurobiol. Aging, 47, 157–167 (2016); doi: https://doi.org/10.1016/j.neurobiolaging.2016.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Sun, F. Gong, J. Yin, et al., “Therapeutic effect of apocynin through antioxidant activity and suppression of apoptosis and inflammation after spinal cord injury,” Exp. Ther. Med., 13, No. 3, 952–960 (2017); doi: https://doi.org/10.3892/etm.2017.4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Olukman, A. Önal, F. G. Celenk, et al., “Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats,” Neural Regen. Res., 13, No. 9, 1657–1664 (2018); doi:https://doi.org/10.4103/1673-5374.232530.

    Article  PubMed  PubMed Central  Google Scholar 

  10. W. C. Zhao, B. Zhang, M. J. Liao, et al., “Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord,” Neurosci. Lett., 560, 81–85 (2014); doi: https://doi.org/10.1016/j.neulet.2013.12.019.

    Article  CAS  PubMed  Google Scholar 

  11. G. Khayrullina, S. Bermudez, and K. R. Byrnes, “Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury,” J. Neuroinflammation, 12, 172 (2015); doi: https://doi.org/10.1186/s12974-015-0391-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. A. Galoyan, D. S. Sarkissian, V. A. Chavushyan, et al., “Studies of the protective effect of the hypothalamic peptide PRP-3 on spinal cord neurons at different periods after lateral hemisection,” Neurochem. J., 1, No. 2, 160–172 (2007); doi: https://doi.org/10.1134/S1819712407020092.

    Article  Google Scholar 

  13. V. A. Chavushyan, K. V. Simonyan, R. M. Simonyan, et al., “Effects of Stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose,” BMC Complement. Altern. Med., 17, No. 1, 540 (2017); doi: https://doi.org/10.1186/s12906-017-2049-9.

  14. A. S. Isoyan, K. V. Simonyan, R. M. Simonyan, et al., “Superoxide-producing lipoprotein fraction from Stevia leaves: definition of specific activity,” BMC Complement. Altern. Med., 19, No. 1, 88–94 (2019); doi: https://doi.org/10.1186/s12906-019-2500-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Fu, G. Liu, A. Halim, et al., “Mesenchymal stem cell migration and tissue repair,” Cells, 8, No. 8, 784 (2019); doi: https://doi.org/10.3390/cells8080784.

  16. A. Shao, Sh. Tu, J. Lu, and J. Zhang, “Crosstalk between stem cells and spinal cord injury: pathophysiology and treatment strategies,” Stem Cell. Res. Ther., 10, No. 1, 238 (2019); doi: https://doi.org/10.1186/s13287-019-1357-z.

  17. M. A. Simonyan, A. V. Karapetyan, M. A. Babayan, and R. M. Simonyan, “NADPH-containing superoxideproducing lipoprotein fraction of blood serum. Isolation, purification, brief characterization and mechanism of action,” Biokhimiya, 61, No. 5, 932–938 (1996).

    CAS  Google Scholar 

  18. B. K. Chen, A. M. Knight, N. N. Madigan, et al., “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials, 32, No. 32, 8077–8086 (2011); doi: https://doi.org/10.1016/j.biomaterials.2011.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. S. Rosenzweig and J. W. McDonald, “Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair,” Curr. Opin. Neurol., 17, No. 2, 121–131 (2004); doi: https://doi.org/10.1097/00019052-200404000-00007.

    Article  PubMed  Google Scholar 

  20. L. Wang, M. Chopp, A. Szalad, et al., “Thymosin β4 promotes the recovery of peripheral neuropathy in type II diabetic mice,” Neurobiol. Dis., 48, No. 3, 546–555 (2012); doi: https://doi.org/10.1016/j.nbd.2012.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. Lukáčová, P. Jalc, and J. Maršala, “Phospholipid composition in spinal cord regions after ischemia/ reperfusion,” Neurochem. Res., 23, No. 8, 1069–1077 (1998); doi: https://doi.org/10.1023/a:1020708102702.

    Article  PubMed  Google Scholar 

  22. A. Diaz-Ruiz, C. Rios, I. Duarte, et al., “Lipid peroxidation inhibition in spinal cord injury: cyclosporin-A vs. methylprednisolone,” Neuroreport, 11, No. 8, 1765–1767 (2000); doi: https://doi.org/10.1097/00001756-200006050-00033.

    Article  CAS  PubMed  Google Scholar 

  23. A. Coyoy-Salgado, J. J. Segura-Uribe, C. Guerra-Araiza, “The importance of natural antioxidants in the treatment of spinal cord injury in animal models: An overview,” Oxid. Med. Cell. Longev., 2019, ID3642491 (2019); doi: https://doi.org/10.1155/2019/3642491.

    Article  CAS  Google Scholar 

  24. C. Rask-Madsen and G. L. King, “Vascular complications of diabetes: mechanisms of injury and protective factors,” Cell. Metab., 17, No. 1, 20–33 (2013); doi: https://doi.org/10.1016/j.cmet.2012.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu. A. Vladimirov and A. I. Archacov, Lipid Peroxidation in Biomembranes, Nauka, Moscow (1972).

    Google Scholar 

  26. R. M. Simonyan, K. A. Galoyan, and A. R. Hachatryan, “Ferrihemoglobin induces the release of NADPH oxidase from brain-membrane tissue ex vivo: the suppression of this process by galarmin,” Neurochem. J., 7, No. 3, 221–225 (2013); doi: https://doi.org/10.1134/S1819712413030148.

    Article  CAS  Google Scholar 

  27. M. S. Sirakanyan, G. R. Oksuzyan, R. M. Simonyan, et al., “Effect of Mo+6 and cadmium ions on superoxideproducing and meth-Hb-reducing activity of new isoform of cytochrome b558 from spleen cell membranes in vitro,” Biol. J. Armenia, Nos. 3-4, 185–189 (2006).

    Google Scholar 

  28. Y. Shiro, Y. Isogai, H. Nakamura, and T. Iizuka, “Physiological functions and molecular structures of new types of hemoproteins,” Prog. Biotechnol., 22, 189–204 (2002); doi: https://doi.org/10.1016/S0921-0423(02)80053-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Simonyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonyan, K.V., Chavushyan, V.A., Avetisyan, L.G. et al. Regulatory Effects of Stevia Rebaudiana on NADPH Oxidase-Related Manifestations of Oxidative Stress in Diabetic Rats with Spinal Cord Injury. Neurophysiology 53, 13–21 (2021). https://doi.org/10.1007/s11062-021-09908-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-021-09908-2

Keywords

Navigation