Skip to main content

Advertisement

Log in

Exploring MGMT methylation-driven structural connectivity changes in insular gliomas: a tractography and graph theoretical analysis

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objectives

This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres.

Methods

We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level.

Results

The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides.

Conclusion

Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stoecklein VM, Stoecklein S, Galie F et al (2020) Resting-state fMRI detects alterations in whole brain connectivity related to Tumor biology in glioma patients. Neuro Oncol Sep 29(9):1388–1398. https://doi.org/10.1093/neuonc/noaa044

    Article  Google Scholar 

  2. Zhao B, Li T, Yang Y et al (2021) Common genetic variation influencing human white matter microstructure. Sci Jun 18(6548). https://doi.org/10.1126/science.abf3736

  3. Sharifi G, Pajavand AM, Nateghinia S, Meybodi TE, Hasooni H (2019) Glioma Migration through the Corpus Callosum and the Brainstem detected by diffusion and magnetic resonance imaging: initial findings. Front Hum Neurosci 13:472. https://doi.org/10.3389/fnhum.2019.00472

    Article  PubMed  Google Scholar 

  4. Nicholson JG, Fine HA (2021) Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov Mar 11(3):575–590. https://doi.org/10.1158/2159-8290.CD-20-1474

    Article  CAS  Google Scholar 

  5. Dahlrot RH, Larsen P, Boldt HB et al (2019) Posttreatment Effect of MGMT methylation level on Glioblastoma Survival. J Neuropathol Exp Neurol Jul 1(7):633–640. https://doi.org/10.1093/jnen/nlz032

    Article  CAS  Google Scholar 

  6. Lam K, Eldred BSC, Kevan B et al (2022) Prognostic value of O6-methylguanine-DNA methyltransferase methylation in isocitrate dehydrogenase mutant gliomas. Neuro-Oncology Adv 4(1). https://doi.org/10.1093/noajnl/vdac030

  7. Pajavand AM, Sharifi G, Anvari A et al (2021) Case Report: Chemotherapy Indication in a case of neurofibromatosis type 1 presenting Optic Pathway Glioma: a one-year clinical case study using Differential Tractography Approach. Front Hum Neurosci 15:620439. https://doi.org/10.3389/fnhum.2021.620439

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hafazalla K, Sahgal A, Jaja B, Perry JR, Das S, Procarbazine (2018) CCNU and vincristine (PCV) versus temozolomide chemotherapy for patients with low-grade glioma: a systematic review. Oncotarget Sep 14(72):33623–33633. https://doi.org/10.18632/oncotarget.25890

    Article  Google Scholar 

  9. Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma. N Engl J Med Apr 7(14):1344–1355. https://doi.org/10.1056/NEJMoa1500925

    Article  CAS  Google Scholar 

  10. Tzaridis T, Schafer N, Weller J et al (2021) MGMT promoter methylation analysis for allocating combined CCNU/TMZ chemotherapy: lessons learned from the CeTeG/NOA-09 trial. Int J Cancer Apr 1(7):1695–1707. https://doi.org/10.1002/ijc.33363

    Article  CAS  Google Scholar 

  11. Chahal M, Abdulkarim B, Xu Y et al (2012) O6-Methylguanine-DNA methyltransferase is a novel negative effector of invasion in Glioblastoma Multiforme. Mol Cancer Ther Nov 11(11):2440–2450. https://doi.org/10.1158/1535-7163.MCT-11-0977

    Article  CAS  Google Scholar 

  12. Chahal M, Xu Y, Lesniak D et al (2010) MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncol Aug 12(8):822–833. https://doi.org/10.1093/neuonc/noq017

    Article  CAS  Google Scholar 

  13. Knopp EA, Cha S, Johnson G et al (1999) Glial Neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiol Jun 211(3):791–798. https://doi.org/10.1148/radiology.211.3.r99jn46791

    Article  CAS  Google Scholar 

  14. Ryoo I, Choi SH, Kim JH et al (2013) Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles. PLoS ONE 8(8):e71704. https://doi.org/10.1371/journal.pone.0071704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu W, Zhang L, Wei Q, Shao A (2019) O(6)-Methylguanine-DNA methyltransferase (MGMT): challenges and New opportunities in Glioma Chemotherapy. Front Oncol 9:1547. https://doi.org/10.3389/fonc.2019.01547

    Article  PubMed  Google Scholar 

  16. Zhang F, Daducci A, He Y et al (2022) Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. Neuroimage Apr 1 249:118870. https://doi.org/10.1016/j.neuroimage.2021.118870

    Article  Google Scholar 

  17. Aleman-Gomez Y, Griffa A, Houde JC et al (2022) A multi-scale probabilistic atlas of the human connectome. Sci Data Aug 23(1):516. https://doi.org/10.1038/s41597-022-01624-8

    Article  Google Scholar 

  18. Wang J, Xu SL, Duan JJ et al (2019) Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat Neurosci Jan 22(1):91–105. https://doi.org/10.1038/s41593-018-0285-z

    Article  CAS  Google Scholar 

  19. Yeh FC, Vettel JM, Singh A et al (2016) Quantifying differences and similarities in Whole-Brain White Matter Architecture using local Connectome fingerprints. PLoS Comput Biol Nov 12(11):e1005203. https://doi.org/10.1371/journal.pcbi.1005203

    Article  CAS  Google Scholar 

  20. Kesler SR, Noll K, Cahill DP, Rao G, Wefel JS (2017) The effect of IDH1 mutation on the structural connectome in malignant astrocytoma. J Neurooncol Feb 131(3):565–574. https://doi.org/10.1007/s11060-016-2328-1

    Article  CAS  Google Scholar 

  21. Yang ZC, Yin CD, Yeh FC et al (2023) A preliminary study on corticospinal tract morphology in incidental and symptomatic insular low-grade glioma: implications for post-surgical motor outcomes. Neuroimage Clin Oct 13:40:103521. https://doi.org/10.1016/j.nicl.2023.103521

    Article  Google Scholar 

  22. Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage Jan 15 125:1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019

    Article  Google Scholar 

  23. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging Sep 29(9):1626–1635. https://doi.org/10.1109/TMI.2010.2045126

    Article  Google Scholar 

  24. Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage. Sep 1. ;58(1):91 – 9. https://doi.org/10.1016/j.neuroimage.2011.06.021

  25. Yeh FC, Zaydan IM, Suski VR et al (2019) Differential tractography as a track-based biomarker for neuronal injury. Neuroimage Nov 15:202:116131. https://doi.org/10.1016/j.neuroimage.2019.116131

    Article  Google Scholar 

  26. Barrios-Martinez JV, Fernandes-Cabral DT, Abhinav K et al (2022) Differential tractography as a dynamic imaging biomarker: a methodological pilot study for Huntington’s Disease. Neuroimage Clin 35:103062. https://doi.org/10.1016/j.nicl.2022.103062

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yeh FC, Tang PF, Tseng WY (2013) Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic Stroke. Neuroimage Clin 2:912–921. https://doi.org/10.1016/j.nicl.2013.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yeh FC, Badre D, Verstynen T, Connectometry (2016) A statistical approach harnessing the analytical potential of the local connectome. Neuroimage Jan 15 125:162–171. https://doi.org/10.1016/j.neuroimage.2015.10.053

    Article  Google Scholar 

  29. Yeh FC, Verstynen TD, Wang Y, Fernandez-Miranda JC, Tseng WY (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8(11):e80713. https://doi.org/10.1371/journal.pone.0080713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeh FC (2020) Shape analysis of the human association pathways. Neuroimage Dec 223:117329. https://doi.org/10.1016/j.neuroimage.2020.117329

    Article  Google Scholar 

  31. Zhu S, Hosni SI, Huang X et al (2023) A dynamical graph-based feature extraction approach to enhance mental task classification in brain-computer interfaces. Comput Biol Med Feb 153:106498. https://doi.org/10.1016/j.compbiomed.2022.106498

    Article  Google Scholar 

  32. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  33. Radke J, Koch A, Pritsch F et al (2019) Predictive MGMT status in a homogeneous cohort of IDH wildtype glioblastoma patients. Acta Neuropathol Commun Jun 5(1):89. https://doi.org/10.1186/s40478-019-0745-z

    Article  CAS  Google Scholar 

  34. Han Y, Yan LF, Wang XB et al (2018) Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis. BMC Cancer Feb 21(1):215. https://doi.org/10.1186/s12885-018-4114-2

    Article  CAS  Google Scholar 

  35. Sunwoo L, Choi SH, Park CK et al (2013) Correlation of apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed with MS-MLPA in patients with Glioblastoma Multiforme. J Magn Reson Imaging Feb 37(2):351–358. https://doi.org/10.1002/jmri.23838

    Article  Google Scholar 

  36. Celtikci P, Fernandes-Cabral DT, Yeh FC, Panesar SS, Fernandez-Miranda JC (2018) Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas. Neuroradiol Mar 60(3):267–280. https://doi.org/10.1007/s00234-018-1985-5

    Article  Google Scholar 

  37. Faraji AH, Abhinav K, Jarbo K et al (2015) Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience. J Neurosurg Nov 123(5):1133–1144. https://doi.org/10.3171/2014.12.JNS142169

    Article  CAS  Google Scholar 

  38. Martino J, Mato D, de Lucas EM et al (2015) Subcortical anatomy as an anatomical and functional landmark in insulo-opercular gliomas: implications for surgical approach to the insular region. J Neurosurg Oct 123(4):1081–1092. https://doi.org/10.3171/2014.11.JNS141992

    Article  CAS  Google Scholar 

  39. Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia Aug 51(10):1814–1822. https://doi.org/10.1016/j.neuropsychologia.2013.06.007

    Article  Google Scholar 

  40. Hempel JM, Schittenhelm J, Klose U et al (2019) In vivo molecular profiling of human Glioma: cross-sectional observational study using dynamic susceptibility contrast magnetic resonance perfusion imaging. Clin Neuroradiol Sep 29(3):479–491. https://doi.org/10.1007/s00062-018-0676-2

    Article  Google Scholar 

  41. Pope WB, Lai A, Mehta R et al (May 2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32(5):882–889. https://doi.org/10.3174/ajnr.A2385

  42. George K, Neuroanatomy JMD (2023) Thalamocortical Radiations StatPearls.

  43. Felten DL, O’Banion MK, Maida ME (2015) Netter’s atlas of neuroscience. Elsevier Health Sciences

  44. Waller R, Dotterer HL, Murray L, Maxwell AM, Hyde LW (2017) White-Matter tract abnormalities and antisocial behavior: a systematic review of diffusion tensor imaging studies across development. Neuroimage Clin 14:201–215. https://doi.org/10.1016/j.nicl.2017.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  45. Motomura K, Fujii M, Maesawa S, Kuramitsu S, Natsume A, Wakabayashi T (2014) Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study. J Neurosurg Jul 121(1):142–148. https://doi.org/10.3171/2014.2.JNS131234

    Article  Google Scholar 

  46. Fornito A, Zalesky A, Bullmore E (2016) Fundamentals of brain network analysis. Academic press

  47. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci Apr 13(5):336–349. https://doi.org/10.1038/nrn3214

    Article  CAS  Google Scholar 

  48. Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci U S A Sep 3(36):E3435–E3444. https://doi.org/10.1073/pnas.1302581110

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our heartfelt thanks to Dr. Yaou Liu, who serves as the Head of the Department of Radiology, Beijing Tiantan Hospital, Capital Medical University. His invaluable assistance in acquiring the imaging data was pivotal to the success of our study.

Funding

The National Natural Science Foundation of China (82172028) provided support for the work.

Author information

Authors and Affiliations

Authors

Contributions

The conceptual foundation and structural layout of the research were led by JX and ZGH. Contributions to the data interpretation were made by CDY, XYS, GL, and BWX. ZCY was responsible for creating the figures and drafting the manuscript. The research was supervised by ZHD and SJS, who provided critical direction. FCY performed an exhaustive review, adding meaningful advice and recommendations. All contributing authors have examined and endorsed the finalized manuscript and jointly agree to its submission for journal publication.

Corresponding authors

Correspondence to Zong-gang Hou or Jian Xie.

Ethics declarations

Ethical approval

The study has been evaluated and approved by the ethics community of Beijing Tiantan Hospital, Capital Medical University (KY 2020-146-02).

Conflict of interest

The authors declared that they have no conflicts of interest.

Consent to participate

Written informed consent for publication was obtained from all participants.

Consent to publish

All subjects gave written informed consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Zc., Yin, Cd., Yeh, Fc. et al. Exploring MGMT methylation-driven structural connectivity changes in insular gliomas: a tractography and graph theoretical analysis. J Neurooncol 166, 155–165 (2024). https://doi.org/10.1007/s11060-023-04539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04539-5

Keywords

Navigation