Skip to main content

Advertisement

Log in

Relationship between apparent diffusion coefficient and survival as a function of distance from gross tumor volume on radiation planning MRI in newly diagnosed glioblastoma

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the changes in apparent diffusion coefficient (ADC) within incrementally-increased margins beyond the gross tumor volume (GTV) on post-operative radiation planning MRI and their prognostic utility in glioblastoma.

Methods

Radiation planning MRIs of adult patients with newly diagnosed glioblastoma from 2017 to 2020 were assessed. The ADC values were normalized to contralateral normal white matter (nADC). Using 1 mm isotropic incremental margin increases from the GTV, the nADC values were calculated at each increment. Age, ECOG performance status, extent of resection and MGMT promoter methylation status were obtained from medical records. Using univariate and multivariable Cox regression analysis, association of nADC to progression-free and overall survival (PFS, OS) was assessed at each increment.

Results

Seventy consecutive patients with mean age of 53.6 ± 10.3 years, were evaluated. The MGMT promoter was methylated in 31 (44.3%), unmethylated in 36 (51.6%) and unknown in 3 (4.3%) patients. 11 (16%) underwent biopsy, 41 (44%) subtotal resection and 18 (26%) gross total resection. For each 1 mm increase in distance from GTV, the nADC decreased by 0.16% (p < 0.0001). At 1–5 mm increment, the nADC was associated with OS (p < 0.01). From 6 to 11 mm increment the nADC was associated with OS with the p-value gradually increasing from 0.018 to 0.046. nADC was not associated with PFS.

Conclusion

The nADC values at 1–11 mm increments from the GTV margin were associated with OS. Future prospective multicenter studies are needed to validate the findings and to pave the way for the utilization of ADC for margin reduction in radiation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma

GTV:

Gross tumor volume

CTV:

Clinical target volume

DWI:

Diffusion-weighted imaging

nADC:

Normalized apparent diffusion coefficient

PFS:

Progression free survival

OS:

Overall survival

ECOG:

Eastern Cooperative Oncology Group

BBB:

Blood-brain barrier

References

  1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous System: a summary. Neurooncology 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  Google Scholar 

  2. McDonald MW, Shu HK, Curran WJ Jr, Crocker IR (2011) Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys 79:130–136. https://doi.org/10.1016/j.ijrobp.2009.10.048

    Article  CAS  PubMed  Google Scholar 

  3. Gebhardt BJ, Dobelbower MC, Ennis WH, Bag AK, Markert JM, Fiveash JB (2014) Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide. Radiat Oncol 9:130. https://doi.org/10.1186/1748-717X-9-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rapp M, Baernreuther J, Turowski B, Steiger HJ, Sabel M, Kamp MA (2017) Recurrence pattern analysis of primary glioblastoma. World Neurosurg 103:733–740. https://doi.org/10.1016/j.wneu.2017.04.053

    Article  PubMed  Google Scholar 

  5. Tu Z, Xiong H, Qiu Y, Li G, Wang L, Peng S (2021) Limited recurrence distance of glioblastoma under modern radiotherapy era. BMC Cancer 21:720. https://doi.org/10.1186/s12885-021-08467-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dhermain F (2014) Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer 33:16–24. https://doi.org/10.5732/cjc.013.10217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122. https://doi.org/10.1016/0360-3016(91)90171-y

    Article  CAS  PubMed  Google Scholar 

  8. Torres IJ, Mundt AJ, Sweeney PJ, Llanes-Macy S, Dunaway L, Castillo M, Macdonald RL (2003) A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology 60:1113–1118. https://doi.org/10.1212/01.wnl.0000055862.20003.4a

    Article  CAS  PubMed  Google Scholar 

  9. Kleinberg L, Wallner K, Malkin MG (1993) Good performance status of long-term disease-free survivors of intracranial gliomas. Int J Radiat Oncol Biol Phys 26:129–133. https://doi.org/10.1016/0360-3016(93)90183-v

    Article  CAS  PubMed  Google Scholar 

  10. Paulsson AK, McMullen KP, Peiffer AM, Hinson WH, Kearns WT, Johnson AJ, Lesser GJ, Ellis TL, Tatter SB, Debinski W, Shaw EG, Chan MD (2014) Limited margins using modern radiotherapy techniques does not increase marginal failure rate of glioblastoma. Am J Clin Oncol 37:177–181. https://doi.org/10.1097/COC.0b013e318271ae03

    Article  PubMed  PubMed Central  Google Scholar 

  11. Minniti G, Tini P, Giraffa M, Capone L, Raza G, Russo I, Cinelli E, Gentile P, Bozzao A, Paolini S, Esposito V (2023) Feasibility of clinical target volume reduction for glioblastoma treated with standard chemoradiation based on patterns of failure analysis. Radiother Oncol 181:109435. https://doi.org/10.1016/j.radonc.2022.11.024

    Article  CAS  PubMed  Google Scholar 

  12. Pollom EL, Fujimoto D, Wynne J, Seiger K, Modlin LA, Jacobs LR, Azoulay M, von Eyben R, Tupper L, Gibbs IC, Hancock SL, Li G, Chang SD, Adler JR, Harsh GR, Harraher C, Nagpal S, Thomas RP, Recht LD, Choi CYH, Soltys SG (2017) Phase 1/2 trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent and adjuvant temozolomide in newly diagnosed supratentorial glioblastoma: health-related quality of life results. Int J Radiat Oncol Biol Phys 98:123–130. https://doi.org/10.1016/j.ijrobp.2017.01.242

    Article  PubMed  PubMed Central  Google Scholar 

  13. Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C (2016) ESTRO-ACROP guideline target delineation of glioblastomas. Radiother Oncol 118:35–42. https://doi.org/10.1016/j.radonc.2015.12.003

    Article  PubMed  Google Scholar 

  14. Tseng C-L, Stewart J, Whitfield G, Verhoeff JJC, Bovi J, Soliman H, Chung C, Myrehaug S, Campbell M, Atenafu EG, Heyn C, Das S, Perry J, Ruschin M, Sahgal A (2020) Glioma consensus contouring recommendations from a MR-Linac international consortium research group and evaluation of a CT-MRI and MRI-only workflow. J Neurooncol 149:305–314. https://doi.org/10.1007/s11060-020-03605-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wen Q, Jalilian L, Lupo JM, Molinaro AM, Chang SM, Clarke J, Prados M, Nelson SJ (2015) Comparison of ADC metrics and their association with outcome for patients with newly diagnosed glioblastoma being treated with radiation therapy, temozolomide, erlotinib and bevacizumab. J Neurooncol 121:331–339. https://doi.org/10.1007/s11060-014-1636-6

    Article  CAS  PubMed  Google Scholar 

  16. Eidel O, Neumann JO, Burth S, Kieslich PJ, Jungk C, Sahm F, Kickingereder P, Kiening K, Unterberg A, Wick W, Schlemmer HP, Bendszus M, Radbruch A (2016) Automatic analysis of cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic nuclei counting. PLoS One 11:e0160250. https://doi.org/10.1371/journal.pone.0160250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta A, Young RJ, Karimi S, Sood S, Zhang Z, Mo Q, Gutin PH, Holodny AI, Lassman AB (2011) Isolated diffusion restriction precedes the development of enhancing tumor in a subset of patients with glioblastoma. AJNR Am J Neuroradiol 32:1301–1306. https://doi.org/10.3174/ajnr.A2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, Nelson SJ, Gerstner E, Alexander B, Goldmacher G, Wick W, Vogelbaum M, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Pope WB, Yang D, Chung C, Knopp MV, Cha S, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, Gilbert MR, Committee tJBTDDCISS, Whitney A, Sandak D, Musella A, Haynes C, Wallace M, Arons DF, Kingston A, Sul J, Krainak D, tJBTDDCISS Committee (2015) Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neurooncology 17:1188–1198. https://doi.org/10.1093/neuonc/nov095

    Article  Google Scholar 

  19. Jabehdar Maralani P, Myrehaug S, Mehrabian H, Chan AKM, Wintermark M, Heyn C, Conklin J, Ellingson BM, Rahimi S, Lau AZ, Tseng CL, Soliman H, Detsky J, Daghighi S, Keith J, Munoz DG, Das S, Atenafu EG, Lipsman N, Perry J, Stanisz G, Sahgal A (2021) Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma. Radiother Oncol 156:258–265. https://doi.org/10.1016/j.radonc.2020.12.037

    Article  PubMed  Google Scholar 

  20. Stewart J, Sahgal A, Lee Y, Soliman H, Tseng CL, Detsky J, Husain Z, Ho L, Das S, Maralani PJ, Lipsman N, Stanisz G, Perry J, Chen H, Atenafu EG, Campbell M, Lau AZ, Ruschin M, Myrehaug S (2021) Quantitating Interfraction target dynamics during concurrent chemoradiation for glioblastoma: a prospective serial imaging study. Int J Radiat Oncol Biol Phys 109:736–746. https://doi.org/10.1016/j.ijrobp.2020.10.002

    Article  PubMed  Google Scholar 

  21. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  22. Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S, Shibata E (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249:624–630. https://doi.org/10.1148/radiol.2492071681

    Article  PubMed  Google Scholar 

  23. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. https://doi.org/10.1200/jco.2009.26.3541

    Article  PubMed  Google Scholar 

  24. Allen LM, Hasso AN, Handwerker J, Farid H (2012) Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 32:1285–1297. https://doi.org/10.1148/rg.325115760. (discussion 1297 – 1289)

    Article  PubMed  Google Scholar 

  25. van der Hoorn A, Yan JL, Larkin TJ, Boonzaier NR, Matys T, Price SJ (2016) Posttreatment Apparent Diffusion Coefficient Changes in the Periresectional Area in patients with Glioblastoma. World Neurosurg 92:159–165. https://doi.org/10.1016/j.wneu.2016.04.129

    Article  PubMed  Google Scholar 

  26. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798. https://doi.org/10.1148/radiology.211.3.r99jn46791

    Article  CAS  PubMed  Google Scholar 

  27. Lee EK, Choi SH, Yun TJ, Kang KM, Kim TM, Lee SH, Park CK, Park SH, Kim IH (2015) Prediction of response to Concurrent Chemoradiotherapy with Temozolomide in Glioblastoma: application of Immediate Post-Operative Dynamic susceptibility contrast and Diffusion-Weighted MR Imaging. Korean J Radiol 16:1341–1348. https://doi.org/10.3348/kjr.2015.16.6.1341

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vivas-Buitrago T, Domingo RA, Tripathi S, De Biase G, Brown D, Akinduro OO, Ramos-Fresnedo A, Sabsevitz DS, Bendok BR, Sherman W, Parney IF, Jentoft ME, Middlebrooks EH, Meyer FB, Chaichana KL, Quinones-Hinojosa A (2022) Influence of supramarginal resection on survival outcomes after gross-total resection of IDH-wild-type glioblastoma. J Neurosurg 136:1–8. https://doi.org/10.3171/2020.10.Jns203366

    Article  CAS  PubMed  Google Scholar 

  29. Kim MM, Sun Y, Aryal MP, Parmar HA, Piert M, Rosen B, Mayo CS, Balter JM, Schipper M, Gabel N, Briceño EM, You D, Heth J, Al-Holou W, Umemura Y, Leung D, Junck L, Wahl DR, Lawrence TS, Cao Y (2021) A phase 2 study of dose-intensified Chemoradiation using biologically based Target volume definition in patients with newly diagnosed Glioblastoma. Int J Radiat Oncol Biol Phys 110:792–803. https://doi.org/10.1016/j.ijrobp.2021.01.033

    Article  PubMed  PubMed Central  Google Scholar 

  30. Elson A, Paulson E, Bovi J, Siker M, Schultz C, Laviolette PS (2015) Evaluation of pre-radiotherapy apparent diffusion coefficient (ADC): patterns of recurrence and survival outcomes analysis in patients treated for glioblastoma multiforme. J Neurooncol 123:179–188. https://doi.org/10.1007/s11060-015-1782-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors who appear on the title page contributed to this work in accordance with the authorship guidelines of the journal and: All authors: Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; Drafted the work or revised it critically for important intellectual content; Approved the version to be published; and Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Pejman Jabehdar Maralani.

Ethics declarations

Competing  interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 0.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabehdar Maralani, P., Stewart, J., Hiremath, S. et al. Relationship between apparent diffusion coefficient and survival as a function of distance from gross tumor volume on radiation planning MRI in newly diagnosed glioblastoma. J Neurooncol 164, 597–605 (2023). https://doi.org/10.1007/s11060-023-04440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04440-1

Keywords

Navigation