Skip to main content
Log in

The role of neuropathology in the management of newly diagnosed glioblastoma: a systematic review and evidence-based clinical practice guideline

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Target Population

These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma (GBM)

Question

For adult patients with newly diagnosed GBM does testing for Isocitrate Dehydrogenase 1 or 2 (IDH 1/2) mutations afford benefit beyond standard histopathology in providing accurate classification and outcome prognostication?

Level III IDH 1/2 mutational status by immunohistochemistry (IHC) and/or sequencing is suggested for classification and prognostic information.

Level III Non-canonical IDH 1/2 mutations are very rare in patients aged 55 or older and universal testing of variant mutations by sequence analysis is not suggested for this age range.

Question

For adult patients with lower grade infiltrating astrocytomas (WHO grades II and III) can the IDH-wildtype status designation supersede histopathology to predict prognosis and biologic relevance to eventual behavior as a GBM?

Level III The designation of infiltrating astrocytomas (WHO grades II and III) as IDH-wildtype is not suggested as sufficient for a higher grade designation alone.

Level III It is suggested that IDH-wildtype WHO grades II and III astrocytomas be tested for molecular-genetic alterations typical of IDH-wildtype GBM such as EGFR amplification, gain of chromosome 7/loss of chromosome 10 and TERT-p mutation to substantiate prediction of behavior similar to IDH-wildtype glioblastoma.

Level III It is suggested that a diagnosis of diffuse astrocytic glioma, IDH-wildtype, with molecular features of GBM, WHO grade IV be rendered for infiltrating astrocytomas that lack histologic criteria of GBM but harbors molecular-genetic alterations of IDH-wildtype glioblastoma.

Question

For adult patients with newly diagnosed infiltrating glioma arising in the midline does testing for H3-K27M mutations provide information beyond that gained by histopathology for accurate classification and outcome prognostication?

Level III It is suggested that infiltrating gliomas arising in midline anatomic locations be tested for the H3-K27M mutation as they tend to exhibit WHO grade IV behavior even if they lack histologic criteria for glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burger PC, Scheithauer BW, Lee RR, O'Neill BP (1997) An interdisciplinary approach to avoid the overtreatment of patients with central nervous system lesions. Cancer 80(11):2040–2046

    Article  CAS  PubMed  Google Scholar 

  2. Burger PC, Nelson JS, Boyko OB (1998) Diagnostic synergy in radiology and surgical neuropathology: radiographic findings of specific pathologic entities. Arch Pathol Lab Med 122(7):620–632

    CAS  PubMed  Google Scholar 

  3. Burger PC, Nelson JS, Boyko OB (1998) Diagnostic synergy in radiology and surgical neuropathology: neuroimaging techniques and general interpretive guidelines. Arch Pathol Lab Med 122(7):609–619

    CAS  PubMed  Google Scholar 

  4. Perry A, Brat DJ (2018) Practical surgical neuropathology: a diagnostic approach, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  5. Love S, Budka H, Ironside JW, Perry A (2015) Greenfield's neuropathology, 9th. CRC Press, Boca Raton

    Google Scholar 

  6. Kleinschmidt-DeMasters B, Rodríguez FJ, Tihan T (2016) Diagnostic pathology. Neuropathology, 2nd edn. Elsevier, Philadelphia, PA

    Google Scholar 

  7. Louis DN, Ohgaki H, Wiestler OD, Cavenee WKE (2016) WHO classification of tumours of the central nervous system (revised 4th edition). International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  8. Brat DJ, Prayson RA, Ryken TC, Olson JJ (2008) Diagnosis of malignant glioma: role of neuropathology. J Neurooncol 89(3):287–311

    Article  PubMed  Google Scholar 

  9. Bullock R, Chesnut RM, Clifton G et al (1996) Guidelines for the management of severe head injury. Brain Trauma Foundation. Eur J Emerg Med 3(2):109–127

    Article  CAS  PubMed  Google Scholar 

  10. Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 372(26):2481–2498

    Article  CAS  PubMed  Google Scholar 

  11. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174(4):1149–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ward PS, Cross JR, Lu C et al (2012) Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene 31(19):2491–2498

    Article  CAS  PubMed  Google Scholar 

  15. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27(4):599–608

    Article  CAS  PubMed  Google Scholar 

  16. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiestler B, Capper D, Sill M et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128(4):561–571

    Article  CAS  PubMed  Google Scholar 

  22. Guan X, Vengoechea J, Zheng S et al (2014) Molecular subtypes of glioblastoma are relevant to lower grade glioma. PLoS ONE 9(3):e91216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28(3):177–183

    Article  CAS  PubMed  Google Scholar 

  24. Leeper HE, Caron AA, Decker PA, Jenkins RB, Lachance DH, Giannini C (2015) IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 6(30):30295–30305

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772

    Article  CAS  PubMed  Google Scholar 

  26. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848

    Article  CAS  PubMed  Google Scholar 

  27. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474

    Article  PubMed  Google Scholar 

  28. Zhang J, Wu G, Miller CP et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gierke M, Sperveslage J, Schwab D et al (2016) Analysis of IDH1-R132 mutation, BRAF V600 mutation and KIAA1549-BRAF fusion transcript status in central nervous system tumors supports pediatric tumor classification. J Cancer Res Clin Oncol 142(1):89–100

    Article  CAS  PubMed  Google Scholar 

  30. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    Article  CAS  PubMed  Google Scholar 

  31. Metellus P, Coulibaly B, Colin C et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120(6):719–729

    Article  PubMed  Google Scholar 

  32. Ellison DW (2015) Multiple molecular data sets and the classification of adult diffuse gliomas. N Engl J Med 372(26):2555–2557

    Article  CAS  PubMed  Google Scholar 

  33. Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20(1):245–254

    Article  CAS  PubMed  Google Scholar 

  34. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118(5):599–601

    Article  CAS  PubMed  Google Scholar 

  35. Brandner S, von Deimling A (2015) Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol 41(6):694–720

    Article  CAS  PubMed  Google Scholar 

  36. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  37. Chen L, Voronovich Z, Clark K et al (2014) Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro Oncol 16(11):1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeWitt JC, Jordan JT, Frosch MP et al (2017) Cost-effectiveness of IDH testing in diffuse gliomas according to the 2016 WHO classification of tumors of the central nervous system recommendations. Neuro Oncol 19(12):1640–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robinson C, Kleinschmidt-DeMasters BK (2017) IDH1-mutation in diffuse gliomas in persons age 55 years and over. J Neuropathol Exp Neurol 76(2):151–154

    PubMed  Google Scholar 

  40. Figarella-Branger D, Bouvier C, de Paula AM et al (2012) Molecular genetics of adult grade II gliomas: towards a comprehensive tumor classification system. J Neurooncol 110(2):205–213

    Article  CAS  PubMed  Google Scholar 

  41. Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cryan JB, Haidar S, Ramkissoon LA et al (2014) Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas. Oncotarget 5(18):8083–8092

    Article  PubMed  PubMed Central  Google Scholar 

  43. Killela PJ, Pirozzi CJ, Reitman ZJ et al (2014) The genetic landscape of anaplastic astrocytoma. Oncotarget 5(6):1452–1457

    Article  PubMed  Google Scholar 

  44. Wiestler B, Capper D, Holland-Letz T et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451

    Article  CAS  PubMed  Google Scholar 

  45. Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated" diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129(1):133–146

    Article  CAS  PubMed  Google Scholar 

  46. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129(4):585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shirahata M, Ono T, Stichel D et al (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136(1):153–166

    Article  CAS  PubMed  Google Scholar 

  48. Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129(6):867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120(6):707–718

    Article  PubMed  Google Scholar 

  50. Cimino PJ, Zager M, McFerrin L et al (2017) Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathol Commun 5(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Korshunov A, Casalini B, Chavez L et al (2019) Integrated molecular characterization of IDH-mutant glioblastomas. Neuropathol Appl Neurobiol 45(2):108–118

  52. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reuss DE, Kratz A, Sahm F et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130(3):407–417

    Article  CAS  PubMed  Google Scholar 

  54. von Deimling A, Ono T, Shirahata M, Louis DN (2018) Grading of diffuse astrocytic gliomas: a review of studies before and after the advent of IDH testing. Semin Neurol 38(1):19–23

    Article  Google Scholar 

  55. Louis DN, von Deimling A (2017) Grading of diffuse astrocytic gliomas: Broders, Kernohan, Zulch, the WHO… and Shakespeare. Acta Neuropathol 134(4):517–520

    Article  PubMed  Google Scholar 

  56. Wijnenga MMJ, Dubbink HJ, French PJ et al (2017) Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol 134(6):957–959

    Article  CAS  PubMed  Google Scholar 

  57. Hasselblatt M, Jaber M, Reuss D et al (2018) Diffuse astrocytoma, IDH-wildtype: a dissolving diagnosis. J Neuropathol Exp Neurol 77(6):422–425

    Article  CAS  PubMed  Google Scholar 

  58. Cohen A, Sato M, Aldape K et al (2015) DNA copy number analysis of Grade II-III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status. Acta Neuropathol Commun 3:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Aibaidula A, Chan AK, Shi Z et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 19(10):1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weller M, Weber RG, Willscher E et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129(5):679–693

    Article  CAS  PubMed  Google Scholar 

  61. Stichel D, Ebrahimi A, Reuss D et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136(5):793–803

    Article  PubMed  Google Scholar 

  62. Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110(15):6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Killela PJ, Pirozzi CJ, Healy P et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5(6):1515–1525

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arita H, Narita Y, Fukushima S et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126(2):267–276

    Article  CAS  PubMed  Google Scholar 

  65. Arita H, Narita Y, Takami H et al (2013) TERT promoter mutations rather than methylation are the main mechanism for TERT upregulation in adult gliomas. Acta Neuropathol 126(6):939–941

    Article  PubMed  Google Scholar 

  66. Huang DS, Wang Z, He XJ et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51(8):969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Labussiere M, Di Stefano AL, Gleize V et al (2014) TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. Br J Cancer 111(10):2024–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szerlip NJ, Pedraza A, Chakravarty D et al (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109(8):3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Appin CL, Brat DJ (2015) Biomarker-driven diagnosis of diffuse gliomas. Mol Aspects Med 45:87–96

    Article  CAS  PubMed  Google Scholar 

  71. Appin CL, Brat DJ (2014) Molecular genetics of gliomas. Cancer J 20(1):66–72

    Article  CAS  PubMed  Google Scholar 

  72. Appin CL, Brat DJ (2015) Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis. Adv Anat Pathol 22(1):50–58

    Article  CAS  PubMed  Google Scholar 

  73. Louis DN, Aldape K, Brat DJ et al (2017) Announcing cIMPACT-NOW: the consortium to inform molecular and practical approaches to CNS tumor taxonomy. Acta Neuropathol 133(1):1–3

    Article  PubMed  Google Scholar 

  74. Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV". Acta Neuropathol 136(5):805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5):669–678

    Article  CAS  PubMed  Google Scholar 

  76. Tanboon J, Williams EA, Louis DN (2016) The diagnostic use of immunohistochemical surrogates for signature molecular genetic alterations in gliomas. J Neuropathol Exp Neurol 75(1):4–18

    Article  CAS  PubMed  Google Scholar 

  77. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    Article  CAS  PubMed  Google Scholar 

  78. Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  CAS  PubMed  Google Scholar 

  80. Gessi M, Gielen GH, Hammes J et al (2013) H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neurooncol 112(1):67–72

    Article  CAS  PubMed  Google Scholar 

  81. Korshunov A, Capper D, Reuss D et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131(1):137–146

    Article  CAS  PubMed  Google Scholar 

  82. Neumann JE, Dorostkar MM, Korshunov A et al (2016) Distinct histomorphology in molecular subgroups of glioblastomas in young patients. J Neuropathol Exp Neurol 75(5):408–414

    Article  CAS  PubMed  Google Scholar 

  83. Haque F, Varlet P, Puntonet J et al (2017) Evaluation of a novel antibody to define histone 3.3 G34R mutant brain tumours. Acta Neuropathol Commun 5(1):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ichimura K, Narita Y, Hawkins CE (2015) Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):789–808

    Article  CAS  PubMed  Google Scholar 

  85. Buczkowicz P, Hawkins C (2015) Pathology, molecular genetics, and epigenetics of diffuse intrinsic pontine glioma. Front Oncol 5:147

    Article  PubMed  PubMed Central  Google Scholar 

  86. Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline gliomas with histone H3–K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26(5):569–580

    Article  CAS  PubMed  Google Scholar 

  87. Meyronet D, Esteban-Mader M, Bonnet C et al (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 19(8):1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kleinschmidt-DeMasters BK, Mulcahy Levy JM (2018) H3 K27M-mutant gliomas in adults vs children share similar histological features and adverse prognosis. Clin Neuropathol 37(2):53–63

    Article  PubMed  PubMed Central  Google Scholar 

  89. Louis DN, Giannini C, Capper D et al (2018) cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 135(4):639–642

    Article  PubMed  Google Scholar 

  90. Bechet D, Gielen GG, Korshunov A et al (2014) Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 128(5):733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128(5):743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu XY, Gerges N, Korshunov A et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124(5):615–625

    Article  CAS  PubMed  Google Scholar 

  93. Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pekmezci M, Rice T, Molinaro AM et al (2017) Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol 133(6):1001–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the reviewers of The Joint Guidelines Review Committee (JGRC) of the American Association of Neurological Surgeons (AANS): John O’Toole, MD (Lead reviewer); David Bauer, MD; Kimon Bekelis, MD; Andrew Carlson, MD; Isabelle Germano, MD; Catherine McClung Smith, MD; Jonathan Sherman, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Velázquez Vega.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sponsored by the American Association of Neurological Surgeons and Congress of Neurological Surgeons Joint Section on Tumors.

Reviewed for evidence-based integrity and endorsed by the American Association of Neurological Surgeons and Congress of Neurological Surgeons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez Vega, J.E., Brat, D.J., Ryken, T.C. et al. The role of neuropathology in the management of newly diagnosed glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 150, 143–164 (2020). https://doi.org/10.1007/s11060-020-03616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03616-3

Keywords

Navigation