Skip to main content
Log in

Targeting MYC-driven replication stress in medulloblastoma with AZD1775 and gemcitabine

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

MYC-driven medulloblastomas are highly aggressive childhood tumors with dismal outcomes and a lack of new treatment paradigms. We identified that targeting replication stress through WEE1 inhibition to suppress the S-phase replication checkpoint, combined with the attenuation of nucleotide synthesis with gemcitabine, is an effective strategy to induce apoptosis in MYC-driven medulloblastoma that could be rapidly translated into early phase clinical trials in children. Attenuation of replication stress is a key component of MYC-driven oncogenesis. Previous studies revealed a vulnerability in MYC medulloblastoma through WEE1 inhibition. Here, we focused on elucidating combinations of agents to synergize with WEE1 inhibition and drive replication stress toward cell death.

Methods

We first analyzed WEE1 expression in patient tissues by immunohistochemistry. Next, we used high-throughput drug screens to identify agents that would synergize with WEE1 inhibition. Synergy was confirmed by in vitro live cell imaging, ex vivo slice culture models, and in vivo studies using orthotopic and flank xenograft models.

Results

WEE1 expression was significantly higher in Group 3 and 4 medulloblastoma patients. The WEE1 inhibitor AZD1775 synergized with inhibitors of nucleotide synthesis, including gemcitabine. AZD1775 with gemcitabine suppressed proliferation and induced apoptosis. Ex vivo modeling demonstrated efficacy in Group 3 medulloblastoma patients, and in vivo modeling confirmed that combining AZD1775 and gemcitabine effectively suppressed tumor growth.

Conclusion

Our results identified a potent new synergistic treatment combination for MYC-driven medulloblastoma that warrants exploration in early phase clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD et al (2012) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12(12):818–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414

    Article  PubMed  Google Scholar 

  3. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29(11):1424–1430

    Article  PubMed  Google Scholar 

  4. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472

    Article  CAS  PubMed  Google Scholar 

  5. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31(6):737–754e736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, Grobner S, Segura-Wang M, Zichner T, Rudneva VA et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547(7663):311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gajjar AJ, Robinson GW (2014) Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol 11(12):714–722

    Article  CAS  PubMed  Google Scholar 

  8. Leary SE, Olson JM (2012) The molecular classification of medulloblastoma: driving the next generation clinical trials. Curr Opin Pediatr 24(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eilers M, Eisenman RN (2008) Myc's broad reach. Genes Dev 22(20):2755–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. https://doi.org/10.1111/eip.12846

    Article  PubMed  PubMed Central  Google Scholar 

  11. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4(2):199–207

    Article  CAS  PubMed  Google Scholar 

  12. Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24(10):R435–444

    Article  CAS  PubMed  Google Scholar 

  13. Dobbelstein M, Sorensen CS (2015) Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 14(6):405–423

    Article  CAS  PubMed  Google Scholar 

  14. Do K, Doroshow JH, Kummar S (2013) Wee1 kinase as a target for cancer therapy. Cell Cycle 12(19):3159–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448(7155):811–815

    Article  CAS  PubMed  Google Scholar 

  16. Mueller S, Haas-Kogan DA (2015) WEE1 kinase as a target for cancer therapy. J Clin Oncol 33(30):3485–3487

    Article  CAS  PubMed  Google Scholar 

  17. Harris PS, Venkataraman S, Alimova I, Birks DK, Balakrishnan I, Cristiano B, Donson AM, Dubuc AM, Taylor MD, Foreman NK et al (2014) Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol Cancer 13:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K et al (2009) Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 8(11):2992–3000

    Article  CAS  PubMed  Google Scholar 

  19. Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N, Imagaki K, Ohtani J, Sakai T, Yoshizumi T et al (2010) MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 9(7):514–522

    Article  CAS  PubMed  Google Scholar 

  20. Sarcar B, Kahali S, Prabhu AH, Shumway SD, Xu Y, Demuth T, Chinnaiyan P (2011) Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines. Mol Cancer Ther 10(12):2405–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caretti V, Hiddingh L, Lagerweij T, Schellen P, Koken PW, Hulleman E, van Vuurden DG, Vandertop WP, Kaspers GJ, Noske DP et al (2013) WEE1 kinase inhibition enhances the radiation response of diffuse intrinsic pontine gliomas. Mol Cancer Ther 12(2):141–150

    Article  CAS  PubMed  Google Scholar 

  22. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446

    Article  CAS  PubMed  Google Scholar 

  23. Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ et al (2010) In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18(3):244–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goga A, Yang D, Tward AD, Morgan DO, Bishop JM (2007) Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 13(7):820–827

    Article  CAS  PubMed  Google Scholar 

  25. Soucek L, Jucker R, Panacchia L, Ricordy R, Tato F, Nasi S (2002) Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Can Res 62(12):3507–3510

    CAS  Google Scholar 

  26. Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S (1998) Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17(19):2463–2472

    Article  CAS  PubMed  Google Scholar 

  27. Morfouace M, Shelat A, Jacus M, Freeman BB 3rd, Turner D, Robinson S, Zindy F, Wang YD, Finkelstein D, Ayrault O et al (2014) Pemetrexed and gemcitabine as combination therapy for the treatment of group3 medulloblastoma. Cancer Cell 25(4):516–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kreahling JM, Foroutan P, Reed D, Martinez G, Razabdouski T, Bui MM, Raghavan M, Letson D, Gillies RJ, Altiok S (2013) Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas. PLoS ONE 8(3):e57523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, Shumway SD, Mizuarai S, Hirai H, Maitra A et al (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17(9):2799–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  31. Venkataraman S, Alimova I, Balakrishnan I, Harris P, Birks DK, Griesinger A, Amani V, Cristiano B, Remke M, Taylor MD et al (2014) Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget 5(9):2355–2371

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li J, Wu JM, Bao X, Honea N, Xie YM, Kim S, Sparreboom A, Sanai N (2017) Quantitative and mechanistic understanding of AZD1775 penetration across human blood-brain barrier in glioblastoma patients using an IVIVE-PBPK modeling approach. Clin Cancer Res 23(24):7454–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pokorny JL, Calligaris D, Gupta SK, Iyekegbe DO Jr, Mueller D, Bakken KK, Carlson BL, Schroeder MA, Evans DL, Lou Z et al (2015) The efficacy of the Wee1 inhibitor MK-1775 combined with temozolomide is limited by heterogeneous distribution across the blood-brain barrier in glioblastoma. Clin Cancer Res 21(8):1916–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bretones G, Delgado MD, Leon J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849(5):506–516

    Article  CAS  PubMed  Google Scholar 

  35. Rohban S, Campaner S (2015) Myc induced replicative stress response: how to cope with it and exploit it. Biochim Biophys Acta 1849(5):517–524

    Article  CAS  PubMed  Google Scholar 

  36. Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  38. Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33(5):261–274

    Article  CAS  PubMed  Google Scholar 

  39. Mak JP, Man WY, Chow JP, Ma HT, Poon RY (2015) Pharmacological inactivation of CHK1 and WEE1 induces mitotic catastrophe in nasopharyngeal carcinoma cells. Oncotarget 6(25):21074–21084

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJ, Wurdinger T (2011) WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 17(13):4200–4207

    Article  PubMed  CAS  Google Scholar 

  41. Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G, Mavrommati I, Pai CC, Zalmas LP, Drobnitzky N et al (2015) Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28(5):557–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahajan K, Mahajan NP (2013) WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet 29(7):394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mueller S, Hashizume R, Yang X, Kolkowitz I, Olow AK, Phillips J, Smirnov I, Tom MW, Prados MD, James CD et al (2014) Targeting Wee1 for the treatment of pediatric high-grade gliomas. Neuro Oncol 16(3):352–360

    Article  CAS  PubMed  Google Scholar 

  44. Cuneo KC, Morgan MA, Sahai V, Schipper MJ, Parsels LA, Parsels JD, Devasia T, Al-Hawaray M, Cho CS, Nathan H et al (2019) Dose escalation trial of the Wee1 inhibitor Adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J Clin Oncol 37(29):2643–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cole KA, Pal S, Kudgus RA, Ijaz H, Liu X, Minard CG, Pawel BR, Maris JM, Haas-Kogan DA, Voss SD et al (2019) Phase I clinical trial of the Wee1 inhibitor adavosertib (AZD1775) with irinotecan in children with relapsed solid tumors A COG phase I consortium report (ADVL1312). Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-3470

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Darell D. Bigner (Duke University Medical Center, NC, USA) for generously providing the D458 cell line used in this study. The authors appreciate the contributions made by the University of Colorado Denver Tissue Histology Shared Resource (supported in part by the Cancer Center Support Grant P30CA046934), the University of Colorado Cancer Center Functional Genomics Core Facility for providing lentiviral constructs, and the Genomics and Microarray Shared Resource for their assistance with RNA sequencing and ChIP sequencing.

Funding

This work was funded in part by the Morgan Adams Foundation (RV, SV) and NIH R01NS091219 (RV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Vibhakar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All animal procedures were performed in accordance with the National Research Council’s Guide for the Care and Use of Laboratory Animals and were approved by the University of Colorado, Anschutz Medical Campus, Institutional Animal Care and Use Committee (IACUC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, D.C., Venkataraman, S., Subramanian, A. et al. Targeting MYC-driven replication stress in medulloblastoma with AZD1775 and gemcitabine. J Neurooncol 147, 531–545 (2020). https://doi.org/10.1007/s11060-020-03457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03457-0

Keywords

Navigation