Skip to main content

Advertisement

Log in

Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood–brain barrier disruption: where are we now, and where we are going

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2020

This article has been updated

Abstract

Introduction

Intra-arterial (IA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated IA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of IA therapy for the treatment of brain tumors and refinement of its potential applications are necessary.

Methods

We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSIACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of IA therapy for the treatment of brain tumors.

Results

Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the IA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy.

Conclusion

IA drug delivery may significantly affect the way treatments are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of IA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, IA therapy may offer significant benefits for the treatment of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 13 March 2020

    The name of author Jason A. Ellis was missing in the intial online publication, and there was a typo in the sixth author's first name. The original article has been corrected.

References

  1. Klopp CT, Alford TC, Bateman J, Berry GN, Winship T (1950) Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann Surg 132:811–832. https://doi.org/10.1097/00000658-195010000-00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson CB (1964) Chemotherapy of brain tumors by continuous arterial infusion. Surgery 55:640–653

    CAS  PubMed  Google Scholar 

  3. Rapoport SI, Hori M, Klatzo I (1971) Reversible osmotic opening of the blood-brain barrier. Science 173:1026–1028. https://doi.org/10.1126/science.173.4001.1026

    Article  CAS  PubMed  Google Scholar 

  4. Lau WY, Leung TW, Ho SK, Chan M, Machin D, Lau J, Chan AT, Yeo W, Mok TS, Yu SC, Leung NW, Johnson PJ (1999) Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 353:797–801. https://doi.org/10.1016/s0140-6736(98)06475-7

    Article  CAS  PubMed  Google Scholar 

  5. Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin YP (2008) A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology 115(8):1398–1404. https://doi.org/10.1016/j.ophtha.2007.12.014

    Article  PubMed  Google Scholar 

  6. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, Europen Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  7. Stern JI, Raizer JJ (2006) Chemotherapy in the treatment of malignant gliomas. Expert Rev Anticancer Ther 6:755–767. https://doi.org/10.1586/14737140.6.5.755

    Article  CAS  PubMed  Google Scholar 

  8. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764. https://doi.org/10.1227/01.neu.0000318159.21731.cf

    Article  PubMed  Google Scholar 

  9. Storstein A, Helseth E, Johannesen TB, Schellhorn T, Mork S, van Helvoirt R (2011) High-grade gliomas in adults. Tidsskr Nor Laegeforen 131:238–241. https://doi.org/10.4045/tidsskr.09.1362

    Article  PubMed  Google Scholar 

  10. Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305. https://doi.org/10.1200/JCO.2006.09.9861

    Article  CAS  PubMed  Google Scholar 

  11. Chow KL, Gobin YP, Cloughesy T, Sayre JW, Villablanca JP, Vinuela F (2000) Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy. AJNR Am J Neuroradiol 21:471–478

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gobin YP, Cloughesy TF, Chow KL, Duckwiler GR, Sayre JW, Milanese K, Vinuela F (2001) Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology 218:724–732. https://doi.org/10.1148/radiology.218.3.r01mr41724

    Article  CAS  PubMed  Google Scholar 

  13. Qureshi AI, Suri MF, Khan J, Sharma M, Olson K, Guterman LR, Hopkins LN (2001) Superselective intra-arterial carboplatin for treatment of intracranial neoplasms: experience in 100 procedures. J Neurooncol 51:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M (2005) Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer 103:2606–2615. https://doi.org/10.1002/cncr.21112

    Article  PubMed  Google Scholar 

  15. Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D, Neuwelt EA (2006) Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neurooncol 77:279–284. https://doi.org/10.1007/s11060-005-9038-4

    Article  CAS  PubMed  Google Scholar 

  16. Imbesi F, Marchioni E, Benericetti E, Zappoli F, Galli A, Corato M, Ceroni M (2006) A randomized phase III study: comparison between intravenous and intraarterial ACNU administration in newly diagnosed primary glioblastomas. Anticancer Res 26:553–558

    CAS  PubMed  Google Scholar 

  17. Angelov L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH, Peereboom DM, Stevens G, McGregor J, Jahnke K, Lacy CA, Hedrick NA, Shalom E, Ference S, Bell S, Sorenson L, Tyson RM, Haluska M, Neuwelt EA (2009) Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol 27:3503–3509. https://doi.org/10.1200/JCO.2008.19.3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K, Seedial SM, Pannullo SC, Schwartz TH, Stieg P, Zimmerman RD, Knopman J, Scheff RJ, Christos P, Vallabhajosula S, Riina HA (2011) Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. J Neurosurg 114:624–632. https://doi.org/10.3171/2010.9.JNS101223

    Article  CAS  PubMed  Google Scholar 

  19. Jeon JY, Kovanlikaya I, Boockvar JA, Mao X, Shin B, Burkhardt JK, Kesavabhotla K, Christos P, Riina H, Shungu DC, Tsiouris AJ (2012) Metabolic response of glioblastoma to superselective intra-arterial cerebral infusion of bevacizumab: a proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 33(11):2095–2102. https://doi.org/10.3174/ajnr.A3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shin BJ, Burkhardt JK, Riina HA, Boockvar JA (2012) Superselective intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: a technical case series. Neurosurg Clin 23(323–329):ix–x. https://doi.org/10.1016/j.nec.2012.01.008

    Article  Google Scholar 

  21. Fortin D, Morin PA, Belzile F, Mathieu D, Pare FM (2014) Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme. J Neurooncol 119:397–403. https://doi.org/10.1007/s11060-014-1504-4

    Article  CAS  PubMed  Google Scholar 

  22. Chakraborty S, Filippi CG, Wong T, Ray A, Fralin S, Tsiouris AJ, Praminick B, Demopoulos A, McCrea HJ, Bodhinayake I, Ortiz R, Langer DJ, Boockvar JA (2016) Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neurooncol 128:405–415. https://doi.org/10.1007/s11060-016-2099-8

    Article  CAS  PubMed  Google Scholar 

  23. Galla N, Chiang G, Chakraborty S, Singh R, John Tsiouris A, Boockvar J, Kovanlikaya I (2017) Apparent diffusion coefficient changes predict survival after intra-arterial bevacizumab treatment in recurrent glioblastoma. Neuroradiology 59:499–505. https://doi.org/10.1007/s00234-017-1820-4

    Article  PubMed  Google Scholar 

  24. Owens G, Javid R, Belmusto L, Bender M, Blau M (1965) Intra-arterial vincristine therapy of primary gliomas. Cancer 18:756–760. https://doi.org/10.1002/1097-0142(196506)18:6%3c756:aid-cncr2820180613%3e3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  25. Andrews BT (ed) (2011) Cherokee neurosurgeon: a biography of charles byron wilson. CreateSpace Independent Publishing Platform, M.D

    Google Scholar 

  26. Rapoport SI, Hori M, Klatzo I (1972) Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223:323–331. https://doi.org/10.1152/ajplegacy.1972.223.2.323

    Article  CAS  PubMed  Google Scholar 

  27. Rapoport SI (1976) Opening of the blood-brain barrier by acute hypertension. Exp Neurol 52:467–479. https://doi.org/10.1016/0014-4886(76)90218-1

    Article  CAS  PubMed  Google Scholar 

  28. Dedrick RL (1988) Arterial drug infusion: pharmacokinetic problems and pitfalls. J Natl Cancer Inst 80:84–89. https://doi.org/10.1093/jnci/80.2.84

    Article  CAS  PubMed  Google Scholar 

  29. Neuwelt EA, Frenkel EP, Diehl JT, Maravilla KR, Vu LH, Clark WK, Rapoport SI, Barnett PA, Hill SA, Lewis SE, Ehle AL, Beyer CW Jr, Moore RJ (1979) Osmotic blood-brain barrier disruption: a new means of increasing chemotherapeutic agent delivery. Trans Am Neurol Assoc 104:256–260

    CAS  PubMed  Google Scholar 

  30. Neuwelt EA, Glasberg M, Diehl J, Frenkel EP, Barnett P (1981) Osmotic blood-brain barrier disruption in the posterior fossa of the dog. J Neurosurg 55:742–748. https://doi.org/10.3171/jns.1981.55.5.0742

    Article  CAS  PubMed  Google Scholar 

  31. Neuwelt EA, Frenkel EP, D'Agostino AN, Carney DN, Minna JD, Barnett PA, McCormick CI (1985) Growth of human lung tumor in the brain of the nude rat as a model to evaluate antitumor agent delivery across the blood-brain barrier. Cancer Res 45:2827–2833

    CAS  PubMed  Google Scholar 

  32. Neuwelt EA, Barnett PA, McCormick CI, Remsen LG, Kroll RA, Sexton G (1998) Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agents. Clin Cancer Res 4:1549–1555

    CAS  PubMed  Google Scholar 

  33. Bullard DE, Bigner DD (1984) Blood-brain barrier disruption in immature Fischer 344 rats. J Neurosurg 60:743–750. https://doi.org/10.3171/jns.1984.60.4.0743

    Article  CAS  PubMed  Google Scholar 

  34. Greenberg HS, Ensminger WD, Chandler WF, Layton PB, Junck L, Knake J, Vine AK (1984) Intra-arterial BCNU chemotherapy for treatment of malignant gliomas of the central nervous system. J Neurosurg 61:423–429. https://doi.org/10.3171/jns.1984.61.3.0423

    Article  CAS  PubMed  Google Scholar 

  35. Saris SC, Bigner SH, Bigner DD (1984) Intracerebral transplantation of a human glioma line in immunosuppressed rats. J Neurosurg 60:582–588. https://doi.org/10.3171/jns.1984.60.3.0582

    Article  CAS  PubMed  Google Scholar 

  36. Oldfield EH, Dedrick RL, Chatterji DC, Yeager RL, Girton ME, Kornblith PL, Doppman JL (1985) Arterial drug infusion with extracorporeal removal. II. Internal carotid carmustine in the rhesus monkey. Cancer Treat Rep 69:293–303

    CAS  PubMed  Google Scholar 

  37. Oldfield EH, Clark WC, Dedrick RL, Egorin MJ, Austin HA, DeVroom HD, Joyce KM, Doppman JL (1987) Reduced systemic drug exposure by combining intraarterial cis-diamminedichloroplatinum(II) with hemodialysis of regional venous drainage. Cancer Res 47:1962–1967

    CAS  PubMed  Google Scholar 

  38. Cosolo WC, Martinello P, Louis WJ, Christophidis N (1989) Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol 256:R443–447. https://doi.org/10.1152/ajpregu.1989.256.2.R443

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro WR, Green SB, Burger PC, Selker RG, VanGilder JC, Robertson JT, Mealey J Jr, Ransohff J, Mahaley MS Jr (1992) A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg 76:772–781. https://doi.org/10.3171/jns.1992.76.5.0772

    Article  CAS  PubMed  Google Scholar 

  40. Neuwelt EA, Maravilla KR, Frenkel EP, Rapaport SI, Hill SA, Barnett PA (1979) Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest 64:684–688. https://doi.org/10.1172/JCI109509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fenstermacher JD, Johnson JA (1966) Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Physiol 211:341–346. https://doi.org/10.1152/ajplegacy.1966.211.2.341

    Article  CAS  PubMed  Google Scholar 

  42. Joshi S, Ellis JA, Ornstein E, Bruce JN (2015) Intraarterial drug delivery for glioblastoma mutiforme: will the phoenix rise again? J Neurooncol 124:333–343. https://doi.org/10.1007/s11060-015-1846-6

    Article  CAS  PubMed  Google Scholar 

  43. Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, Heyn C, Alkins R, Trudeau M, Sahgal A, Perry J, Hynynen K (2019) Blood–brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 9:321. https://doi.org/10.1038/s41598-018-36340-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams PC, Henner WD, Roman-Goldstein S, Dahlborg SA, Brummett RE, Tableman M, Dana BW, Neuwelt EA (1995) Toxicity and efficacy of carboplatin and etoposide in conjunction with disruption of the blood–brain tumor barrier in the treatment of intracranial neoplasms. Neurosurgery 37(1):17–27. https://doi.org/10.1227/00006123-199507000-00003

    Article  CAS  PubMed  Google Scholar 

  45. Zylber-Katz E, Gomori JM, Schwartz A, Lossos A, Bokstein F, Siegal T (2000) Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma. Clin Pharmacol Ther 67:631–641. https://doi.org/10.1067/mcp.2000.106932

    Article  CAS  PubMed  Google Scholar 

  46. Nakagawa H, Groothuis D, Blasberg RG (1984) The effect of graded hypertonic intracarotid infusions on drug delivery to experimental RG-2 gliomas. Neurology 34:1571–1581. https://doi.org/10.1212/wnl.34.12.1571

    Article  CAS  PubMed  Google Scholar 

  47. Groothuis DR, Warkne PC, Molnar P, Lapin GD, Mikhael MA (1990) Effect of hyperosmotic blood-brain barrier disruption on transcapillary transport in canine brain tumors. J Neurosurg 72:441–449. https://doi.org/10.3171/jns.1990.72.3.0441

    Article  CAS  PubMed  Google Scholar 

  48. Neuwelt EA, Goldman DL, Dahlborg SA, Crossen J, Ramsey F, Roman-Goldstein S, Braziel R, Dana B (1991) Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: prolonged survival and preservation of cognitive function. J Clin Oncol 9:1580–1590. https://doi.org/10.1200/JCO.1991.9.9.1580

    Article  CAS  PubMed  Google Scholar 

  49. Zunkeler B, Carson RE, Olson J, Blasberg RG, DeVroom H, Lutz RJ, Saris SC, Wright DC, Kammerer W, Patronas NJ, Dedrick RL, Herscovitch P, Oldfield EH (1996) Quantification and pharmacokinetics of blood–brain barrier disruption in humans. J Neurosurg 85:1056–1065. https://doi.org/10.3171/jns.1996.85.6.1056

    Article  CAS  PubMed  Google Scholar 

  50. Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, Tsiouris AJ, Boockvar JA (2012) Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg 77:130–134. https://doi.org/10.1016/j.wneu.2011.05.056

    Article  PubMed  Google Scholar 

  51. Nomura T, Inamura T, Black KL (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 659:62–66. https://doi.org/10.1016/0006-8993(94)90863-x

    Article  CAS  PubMed  Google Scholar 

  52. Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW (1995) Pathway across blood–brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 705:125–135. https://doi.org/10.1016/0006-8993(95)01143-9

    Article  CAS  PubMed  Google Scholar 

  53. Matsukado K, Inamura T, Nakano S, Fukui M, Bartus RT, Black KL (1996) Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 39(1):125–133. https://doi.org/10.1097/00006123-199607000-00025

    Article  CAS  PubMed  Google Scholar 

  54. Cloughesy TF, Black KL, Gobin YP, Farahani K, Nelson G, Villablanca P, Kabbinavar F, Vineula F, Wortel CH (1999) Intra-arterial Cereport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. Neurosurgery 44(2):270–278. https://doi.org/10.1097/00006123-199902000-00015

    Article  CAS  PubMed  Google Scholar 

  55. Leuthardt EC, Duan C, Kim MJ, Campian JL, Kim AH, Miller-Thomas MM, Shimony JS, Tran DD (2016) Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS ONE 11:e0148613. https://doi.org/10.1371/journal.pone.0148613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, Auh S, Wilson CM, Sharma K, Aronova MA, Leapman RD, Griffiths GL, Hall MD (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80. https://doi.org/10.1186/1479-5876-6-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE (2011) Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS ONE 6:e22598. https://doi.org/10.1371/journal.pone.0022598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72:3652–3663. https://doi.org/10.1158/0008-5472.CAN-12-0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, Aubert I, Heyn C, Black SE, Hynynen K, Lipsman N, Zinman L (2019) First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun 10:4373. https://doi.org/10.1038/s41467-019-12426-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stephens FO (1995) Induction (neo-adjuvant) chemotherapy: systemic and arterial delivery techniques and their clinical applications. Aust N Z J Surg 65:699–707. https://doi.org/10.1111/j.1445-2197.1995.tb00540.x

    Article  CAS  PubMed  Google Scholar 

  61. Yamane T, Kaneko A, Mohri M (2004) The technique of ophthalmic arterial infusion therapy for patients with intraocular retinoblastoma. Int J Clin Oncol 9:69–73. https://doi.org/10.1007/s10147-004-0392-6

    Article  PubMed  Google Scholar 

  62. Joshi S, Wang M, Etu JJ, Nishanian EV, Pile-Spellman J (2006) Cerebral blood flow affects dose requirements of intracarotid propofol for electrocerebral silence. Anesthesiology 104(2):290–298. https://doi.org/10.1097/00000542-200602000-00014

    Article  CAS  PubMed  Google Scholar 

  63. Joshi S, Wang M, Etu JJ, Suckow RF, Cooper TB, Feinmark SJ, Bruce JN, Fine RL (2008) Transient cerebral hypoperfusion enhances intraarterial carmustine deposition into brain tissue. J Neurooncol 86:123–132. https://doi.org/10.1007/s11060-007-9450-z

    Article  CAS  PubMed  Google Scholar 

  64. Joshi S, Singh-Moon RP, Wang M, Chaudhuri DB, Holcomb M, Straubinger NL, Bruce JN, Bigio IJ, Straubinger RM (2014) Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neurooncol 118:73–82. https://doi.org/10.1007/s11060-014-1421-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Joshi S, Singh-Moon RP, Ellis JA, Chaudhuri DB, Wang M, Reif R, Bruce JN, Bigio IJ, Straubinger RM (2015) Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery 76:92–100. https://doi.org/10.1227/NEU.0000000000000552

    Article  PubMed  Google Scholar 

  66. Tyler JL, Yamamoto YL, Diksic M, Theron J, Villemure JG, Worthington C, Evans AC, Feindel W (1986) Pharmacokinetics of superselective intra-arterial and intravenous [11C]BCNU evaluated by PET. J Nucl Med 27:775–780

    CAS  PubMed  Google Scholar 

  67. Francis JH, Gobin YP, Brodie SE, Marr BP, Dunkel IJ, Abramson DH (2012) Experience of intra-arterial chemosurgery with single agent carboplatin for retinoblastoma. Br J Ophthalmol 96:1270–1271. https://doi.org/10.1136/bjophthalmol-2012-301686

    Article  PubMed  Google Scholar 

  68. Nakasato T, Katoh K, Sone M, Ehara S, Tamakawa Y, Hoshi H, Sekiyama S (2000) Superselective continuous arterial infusion chemotherapy through the superficial temporal artery for oral cavity tumors. AJNR Am J Neuroradiol 21:1917–1922

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cristina V, Pracht M, Lachenal Y, Adib S, Boubaker A, Prior J, Senys A, Wagner AD, Bize P (2014) Interventional radiology procedures for malignancies of the liver treatment: intraarterial procedures. Rev Med Suisse 10(1130–1132):1134–1135

    Google Scholar 

  70. Rashid OM, Sloot S, Zager JS (2014) Regional therapy in metastatic melanoma: an update on minimally invasive intraarterial isolated limb infusion and percutaneous hepatic perfusion. Expert Opin Drug Metab Toxicol 10:1355–1364. https://doi.org/10.1517/17425255.2014.951330

    Article  CAS  PubMed  Google Scholar 

  71. Wang X, Gan C, Li H, Wei Y, Zhu D, Yang G, Su X, Rodier JF, Ren G (2013) Main complications and results of treatment with intra-arterial infusion chemotherapy through the subclavian and thoracic arteries for locally advanced breast cancer. Mol Clin Oncol 1:745–748. https://doi.org/10.3892/mco.2013.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Homma H, Doi T, Mezawa S, Takada K, Kukitsu T, Oku T, Akiyama T, Kusakabe T, Miyanishi K, Niitsu Y (2000) A novel arterial infusion chemotherapy for the treatment of patients with advanced pancreatic carcinoma after vascular supply distribution via superselective embolization. Cancer 89(2):303–313

    Article  CAS  PubMed  Google Scholar 

  73. Chiang PH, Chen CH, Shen YC (2014) Intraarterial chemotherapy as the first-line therapy in penile cancer. Br J Cancer 111:1089–1094. https://doi.org/10.1038/bjc.2014.394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang L, Zhang Z, Dong P, Li Y, Yao K, Liu Z, Han H, Qin Z, Yao M, Zhou F (2014) Efficacy of radical cystectomy plus adjuvant intraarterial chemotherapy with gemcitabine and cisplatin on locally advanced bladder cancer. Chin Med J 127:1249–1254

    PubMed  Google Scholar 

  75. Stratmann SL (2002) Hepatic artery chemotherapy in the management of colorectal metastases. Bayl Univ Med Cent Proc 15:376–379. https://doi.org/10.1080/08998280.2002.11927869

    Article  Google Scholar 

  76. Sedlakova R, Shivers RR, Del Maestro RF (1999) Ultrastructure of the blood-brain barrier in the rabbit. J Submicrosc Cytol Pathol 31:149–161

    CAS  PubMed  Google Scholar 

  77. Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, Sanchez H, McCrea HJ, Goumnerova LC, Song HW, Palecek SP, Shusta E, Ingber DE (2019) Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10:2621. https://doi.org/10.1038/s41467-019-10588-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feun LG, Savaraj N, Bodey GP, Lu K, Yap BS, Ajani JA, Burgess MA, Benjamin RS, McKelvey E, Krakoff I (1984) Phase I study of tricyclic nucleoside phosphate using a five-day continuous infusion schedule. Cancer Res 44:3608–3612

    CAS  PubMed  Google Scholar 

  79. Safdari H, Mompeon B, Dubois JB, Gros C (1985) Intraarterial 1,3-bis(2-chloroethyl)-1-nitrosourea chemotherapy for the treatment of malignant gliomas of the brain: a preliminary report. Surg Neurol 24:490–497. https://doi.org/10.1016/0090-3019(85)90262-9

    Article  CAS  PubMed  Google Scholar 

  80. Feun LG, Lee YY, Yung WK, Charnsangavej C, Savaraj N, Tang RA, Wallace S (1986) Phase II trial of intracarotid BCNU and cisplatin in primary malignant brain tumors. Cancer Drug Deliv 3:147–156

    Article  CAS  PubMed  Google Scholar 

  81. Tonn JC, Roosen K, Schachenmayr W (1991) Brain necroses after intraarterial chemotherapy and irradiation of malignant gliomas–a complication of both ACNU and BCNU? J Neurooncol 11:241–242

    Article  CAS  PubMed  Google Scholar 

  82. Muldoon LL, Pagel MA, Netto JP, Neuwelt EA (2016) Intra-arterial administration improves temozolomide delivery and efficacy in a model of intracerebral metastasis, but has unexpected brain toxicity. J Neurooncol 126:447–454. https://doi.org/10.1007/s11060-015-2000-1

    Article  CAS  PubMed  Google Scholar 

  83. Theodotou C, Shah AH, Hayes S, Bregy A, Johnson JN, Aziz-Sultan MA, Komotar RJ (2014) The role of intra-arterial chemotherapy as an adjuvant treatment for glioblastoma. Br J Neurosurg 28:438–446. https://doi.org/10.3109/02688697.2013.877122

    Article  PubMed  Google Scholar 

  84. Follezou JY, Fauchon F, Chiras J (1989) Intraarterial infusion of carboplatin in the treatment of malignant gliomas: a phase II study. Neoplasma 36:349–352

    CAS  PubMed  Google Scholar 

  85. Riina HA, Knopman J, Greenfield JP, Fralin S, Gobin YP, Tsiouris AJ, Souweidane MM, Boockvar JA (2010) Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma: a technical note. Interv Neuroradiol 16(1):71–76. https://doi.org/10.1177/159101991001600109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peruzzi P, Chiocca EA (2012) Bringing the endovascular neurosurgeon into the neuro-oncology treatment team. World Neurosurg 77:59–61. https://doi.org/10.1016/j.wneu.2011.07.038

    Article  PubMed  Google Scholar 

  87. Newton HB, Slivka MA, Stevens CL, Bourekas EC, Christoforidis GA, Baujan MA, Chakeres DW (2002) Intra-arterial carboplatin and intravenous etoposide for the treatment of recurrent and progressive non-GBM gliomas. J Neurooncol 56:79–86. https://doi.org/10.1023/a:1014498225405

    Article  PubMed  Google Scholar 

  88. Doolittle ND, Miner ME, Hall WA, Siegal T, Jerome E, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D, Nixon R, Muldoon LL, Neuwelt EA (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 88:637–647. https://doi.org/10.1002/(sici)1097-0142(20000201)88:3%3c637:aid-cncr22%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  89. Chen W, Wu Q, Mo L, Nassi M (2013) Intra-arterial chemotherapy is not superior to intravenous chemotherapy for malignant gliomas: a systematic review and meta-analysis. Eur Neurol 70:124–132. https://doi.org/10.1159/000346580

    Article  CAS  PubMed  Google Scholar 

  90. de Groot JF, Yung WK (2008) Bevacizumab and irinotecan in the treatment of recurrent malignant gliomas. Cancer J 14:279–285. https://doi.org/10.1097/PPO.0b013e3181867bd6

    Article  PubMed  Google Scholar 

  91. Rajappa P, Krass J, Riina HA, Boockvar JA, Greenfield JP (2011) Super-selective basilar artery infusion of bevacizumab and cetuximab for multiply recurrent pediatric ependymoma. Interv Neuroradiol 17:459–465. https://doi.org/10.1177/159101991101700410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaka N, Hafazalla K, Samawi H, Simpkin A, Perry J, Sahgal A, Das S (2019) Progression-free but no overall survival benefit for adult patients with bevacizumab therapy for the treatment of newly diagnosed glioblastoma: a systematic review and meta-analysis. Cancers. https://doi.org/10.3390/cancers11111723

    Article  PubMed  PubMed Central  Google Scholar 

  93. Muller-Greven G, Carlin CR, Burgett ME, Ahluwalia MS, Lauko A, Nowacki AS, Herting CJ, Qadan MA, Bredel M, Toms SA, Lathia JD, Hambardzumyan D, Sarkaria JN, Hamerlik P, Gladson CL (2017) Macropinocytosis of bevacizumab by glioblastoma cells in the perivascular niche affects their survival. Clin Cancer Res 23:7059–7071. https://doi.org/10.1158/1078-0432.CCR-17-0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. https://doi.org/10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  95. Burkhardt JK, Hofstetter CP, Santillan A, Shin BJ, Foley CP, Ballon DJ, Pierre Gobin Y, Boockvar JA (2012) Orthotopic glioblastoma stem-like cell xenograft model in mice to evaluate intra-arterial delivery of bevacizumab: from bedside to bench. J Clin Neurosci 19:1568–1572. https://doi.org/10.1016/j.jocn.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  96. Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF (2006) MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66:1258–1260. https://doi.org/10.1212/01.wnl.0000208958.29600.87

    Article  CAS  PubMed  Google Scholar 

  97. Lai A, Filka E, McGibbon B, Nghiemphu PL, Graham C, Yong WH, Mischel P, Liau LM, Bergsneider M, Pope W, Selch M, Cloughesy T (2008) Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 71:1372–1380. https://doi.org/10.1016/j.ijrobp.2007.11.068

    Article  CAS  PubMed  Google Scholar 

  98. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740. https://doi.org/10.1200/JCO.2008.19.8721

    Article  CAS  PubMed  Google Scholar 

  99. Singh R, Kesavabhotla K, Kishore SA, Zhou Z, Tsiouris AJ, Filippi CG, Boockvar JA, Kovanlikaya I (2016) Dynamic susceptibility contrast-enhanced MR perfusion imaging in assessing recurrent glioblastoma response to superselective intra-arterial bevacizumab therapy. AJNR Am J Neuroradiol 37:1838–1843. https://doi.org/10.3174/ajnr.A4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745. https://doi.org/10.1200/JCO.2008.16.3055

    Article  CAS  PubMed  Google Scholar 

  101. Chakraborty S, Filippi CG, Burkhardt JK, Fralin S, Ray A, Wong T, Ortiz R, Langer DJ, Boockvar JA (2016) Durability of single dose intra-arterial bevacizumab after blood/brain barrier disruption for recurrent glioblastoma. J Exp Ther Oncol 11:261–267

    Article  CAS  PubMed  Google Scholar 

  102. Patel NV, Faltings L, Fralin S, Li M, Ortiz R, Langer D, Boockvar J (2019) Super-selective intra-arterial cerebral infusion bevacizumab for treatment of newly diagnosed glioblastoma: phase I/II clinical trial early results. J Neurosurg 131(1):5550

    Google Scholar 

  103. DeAngelis LM, Yahalom J, Thaler HT, Kher U (1992) Combined modality therapy for primary CNS lymphoma. J Clin Oncol 10:635–643. https://doi.org/10.1200/JCO.1992.10.4.635

    Article  CAS  PubMed  Google Scholar 

  104. Glass J, Gruber ML, Cher L, Hochberg FH (1994) Preirradiation methotrexate chemotherapy of primary central nervous system lymphoma: long-term outcome. J Neurosurg 81:188–195. https://doi.org/10.3171/jns.1994.81.2.0188

    Article  CAS  PubMed  Google Scholar 

  105. Abrey LE, DeAngelis LM, Yahalom J (1998) Long-term survival in primary CNS lymphoma. J Clin Oncol 16:859–863. https://doi.org/10.1200/JCO.1998.16.3.859

    Article  CAS  PubMed  Google Scholar 

  106. Abrey LE, Yahalom J, DeAngelis LM (2000) Treatment for primary CNS lymphoma: the next step. J Clin Oncol 18:3144–3150. https://doi.org/10.1200/JCO.2000.18.17.3144

    Article  CAS  PubMed  Google Scholar 

  107. Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96. https://doi.org/10.1016/S1474-4422(07)70326-5

    Article  CAS  PubMed  Google Scholar 

  108. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872. https://doi.org/10.1200/JCO.2004.12.149

    Article  PubMed  Google Scholar 

  109. Kotecki N, Lefranc F, Devriendt D, Awada A (2018) Therapy of breast cancer brain metastases: challenges, emerging treatments and perspectives. Ther Adv Med Oncol 10:1758835918780312. https://doi.org/10.1177/1758835918780312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nahta R, Esteva FJ (2006) HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8:215. https://doi.org/10.1186/bcr1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brandao M, Ponde NF, Poggio F, Kotecki N, Salis M, Lambertini M, de Azambuja E (2018) Combination therapies for the treatment of HER2-positive breast cancer: current and future prospects. Expert Rev Anticancer Ther 18:629–649. https://doi.org/10.1080/14737140.2018.1477596

    Article  CAS  PubMed  Google Scholar 

  112. Jiang N, Lin JJ, Wang J, Zhang BN, Li A, Chen ZY, Guo S, Li BB, Duan YZ, Yan RY, Yan HF, Fu XY, Zhou JL, Yang HM, Cui Y (2018) Novel treatment strategies for patients with HER2-positive breast cancer who do not benefit from current targeted therapy drugs. Exp Ther Med 16:2183–2192. https://doi.org/10.3892/etm.2018.6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pernas S, Tolaney SM (2019) HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol 11:1758835919833519. https://doi.org/10.1177/1758835919833519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, Shiue K, Suh JH (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87:449–457. https://doi.org/10.1016/j.ijrobp.2013.05.015

    Article  PubMed  Google Scholar 

  115. Dashti SR, Spalding A, Kadner RJ, Yao T, Kumar A, Sun DA, LaRocca R (2015) Targeted intraarterial anti-VEGF therapy for medically refractory radiation necrosis in the brain. J Neurosurg Pediatr 15:20–25. https://doi.org/10.3171/2014.9.PEDS14198

    Article  PubMed  Google Scholar 

  116. Furuse M, Kawabata S, Kuroiwa T, Miyatake S (2011) Repeated treatments with bevacizumab for recurrent radiation necrosis in patients with malignant brain tumors: a report of 2 cases. J Neurooncol 102:471–475. https://doi.org/10.1007/s11060-010-0333-3

    Article  PubMed  Google Scholar 

  117. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR, Jackson EF (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495. https://doi.org/10.1016/j.ijrobp.2009.12.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhuang H, Zheng Y, Wang J, Chang JY, Wang X, Yuan Z, Wang P (2016) Analysis of risk and predictors of brain radiation necrosis after radiosurgery. Oncotarget 7:7773–7779. https://doi.org/10.18632/oncotarget.6532

    Article  PubMed  Google Scholar 

  119. Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, Cai Z, Zuo Z, Tang Y (2018) Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys 101:1087–1095. https://doi.org/10.1016/j.ijrobp.2018.04.068

    Article  CAS  PubMed  Google Scholar 

  120. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ, Nam CM, Lee JD, Kim HO, Sohn YH (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72:32–40. https://doi.org/10.1002/ana.23612

    Article  PubMed  Google Scholar 

  121. Jiang Y, Zhu W, Zhu J, Wu L, Xu G, Liu X (2013) Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transpl 22:2291–2298. https://doi.org/10.3727/096368912X658818

    Article  Google Scholar 

  122. Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, Gali A, Sleiman E (2017) Mesenchymal stem cells in the treatment of traumatic brain injury. Front Neurol 8:28. https://doi.org/10.3389/fneur.2017.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Srinivasan VM, Gumin J, Camstra KM, Chen SR, Johnson JN, Shimizu Y, Parker Kerrigan BC, Shpall EJ, Lang FF, Kan P (2019) Microcatheter delivery of neurotherapeutics: compatibility with mesenchymal stem cells. J Neurosurg. https://doi.org/10.3171/2019.6.JNS19327

    Article  PubMed  Google Scholar 

  124. Kirn D (2000) Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 19:6660–6669. https://doi.org/10.1038/sj.onc.1204094

    Article  CAS  PubMed  Google Scholar 

  125. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99:1410–1414. https://doi.org/10.1093/jnci/djm102

    Article  CAS  PubMed  Google Scholar 

  126. Jiang H, Gomez-Manzano C, Rivera-Molina Y, Lang FF, Conrad CA, Fueyo J (2015) Oncolytic adenovirus research evolution: from cell-cycle checkpoints to immune checkpoints. Curr Opin Virol 13:33–39. https://doi.org/10.1016/j.coviro.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12. https://doi.org/10.1038/sj.onc.1203251

    Article  CAS  PubMed  Google Scholar 

  128. Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, Liu TJ, Jiang H, Lemoine MG, Suzuki K, Sawaya R, Curiel DT, Yung WK, Lang FF (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95:652–660. https://doi.org/10.1093/jnci/95.9.652

    Article  CAS  PubMed  Google Scholar 

  129. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD, Gumin J, Vence LM, Wistuba I, Rodriguez-Canales J, Villalobos PA, Dirven CMF, Tejada S, Valle RD, Alonso MM, Ewald B, Peterkin JJ, Tufaro F, Fueyo J (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36:1419–1427. https://doi.org/10.1200/JCO.2017.75.8219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Burkhardt JK, Shin BJ, Schlaff CD, Riina H, Boockvar JA (2011) Cost analysis of intra-arterial versus intra-venous delivery of bevacizumab for the treatment of recurrent glioblastoma multiforme. J Exp Ther Oncol 9:183–186

    PubMed  Google Scholar 

  131. Agid R, Rubinstein R, Siegal T, Lester H, Bokstein F, Chisin R, Gomori JM (2002) Does streaming affect the cerebral distribution of infraophthalmic intracarotid chemotherapy? AJNR Am J Neuroradiol 23:1732–1735

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy S. D’Amico.

Ethics declarations

Conflict of interest

I certify that this manuscript is a unique submission and has not been previously published elsewhere, nor is it under consideration for publication, in part or in full, with any other source in any medium. All authors of this manuscript have contributed to, read, and approved of the manuscript and its submission for publication. The authors will be happy to provide the required forms should the manuscript be accepted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Author Jason A. Ellis was added and a typo in the sixth author’s first name was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, R.S., Khatri, D., Reichman, N. et al. Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood–brain barrier disruption: where are we now, and where we are going. J Neurooncol 147, 261–278 (2020). https://doi.org/10.1007/s11060-020-03435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03435-6

Keywords

Navigation