Skip to main content

Advertisement

Log in

Oligodendrogliomas in pediatric and teenage patients only rarely exhibit molecular markers and patients have excellent survivals

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Although oligodendrogliomas appear histologically similar in adult and pediatric patients, the latter have only been rarely studied and most of those studies did not have long follow-up. We examined 55 oligodendroglial tumors from pediatric and teenage patients for their biomarkers with formalin-fixed paraffin-embedded tissues and studied their survival status. None of the tumors harbored 1p/19q codeletion or IDH mutation. Mutations in TERTp (4%), BRAF (11%), FGFR1 (3%) and H3F3A (5%), fusions of BRAF (8%) and FGFR1 (8%) were found sparingly and almost all in a mutually exclusive manner. Molecular events were exclusively found in tumors with classic oligodendroglial histology. Survival analysis showed remarkably excellent prognosis compared to the adult counterparts. 5-year overall survival was 95% in our cohort with median follow-up of 8.1 years and in nine patients with follow-up more than 10 years, the 10-year overall survival was 100%. The 5-year and 10-year progression-free survivals of our cohort were 89 and 77%, respectively. FGFR1 fusion seemed to confer a poor prognosis in pediatric oligodendrogliomas. Patients receiving adjuvant chemotherapy (p = 0.046) or harboring Grade II histology (p < 0.001) had longer interval to recurrence. Our study demonstrated the distinct indolent clinical course of pediatric and teenage oligodendrogliomas compared to the adult tumors. Molecular markers commonly seen in adult oligodendrogliomas and other pediatric low-grade gliomas were only rarely seen. Since there is no clinical or molecular evidence suggesting that pediatric “oligodendrogliomas” are the same as adult oligodendrogliomas albeit histologic similarity, a case can be made for their separation from adult oligodendrogliomas in the next WHO classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  2. Suri V, Jha P, Agarwal S, Pathak P, Sharma MC, Sharma V, Shukla S, Somasundaram K, Mahapatra AK, Kale SS, Sarkar C (2011) Molecular profile of oligodendrogliomas in young patients. Neuro Oncol 13(10):1099–1106. https://doi.org/10.1093/neuonc/nor146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rodriguez FJ, Tihan T, Lin D, McDonald W, Nigro J, Feuerstein B, Jackson S, Cohen K, Burger PC (2014) Clinicopathologic features of pediatric oligodendrogliomas: a series of 50 patients. Am J Surg Pathol 38(8):1058–1070. https://doi.org/10.1097/PAS.0000000000000221

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kreiger PA, Okada Y, Simon S, Rorke LB, Louis DN, Golden JA (2005) Losses of chromosomes 1p and 19q are rare in pediatric oligodendrogliomas. Acta Neuropathol 109(4):387–392. https://doi.org/10.1007/s00401-004-0976-2

    Article  PubMed  Google Scholar 

  5. Raghavan R, Balani J, Perry A, Margraf L, Vono MB, Cai DX, Wyatt RE, Rushing EJ, Bowers DC, Hynan LS, White CL III (2003) Pediatric oligodendrogliomas: a study of molecular alterations on 1p and 19q using fluorescence in situ hybridization. J Neuropathol Exp Neurol 62(5):530–537. https://doi.org/10.1093/jnen/62.5.530

    Article  PubMed  Google Scholar 

  6. Creach KM, Rubin JB, Leonard JR, Limbrick DD, Smyth MD, Dacey R, Rich KM, Dowling JL, Grubb RL Jr, Linette GP, King AA, Michalski JM, Park TS, Perry A, Simpson JR, Mansur DB (2012) Oligodendrogliomas in children. J Neurooncol 106(2):377–382. https://doi.org/10.1007/s11060-011-0674-6

    Article  PubMed  Google Scholar 

  7. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, Orisme W, Punchihewa C, Parker M, Qaddoumi I, Boop FA, Lu C, Kandoth C, Ding L, Lee R, Huether R, Chen X, Hedlund E, Nagahawatte P, Rusch M, Boggs K, Cheng J, Becksfort J, Ma J, Song G, Li Y, Wei L, Wang J, Shurtleff S, Easton J, Zhao D, Fulton RS, Fulton LL, Dooling DJ, Vadodaria B, Mulder HL, Tang C, Ochoa K, Mullighan CG, Gajjar A, Kriwacki R, Sheer D, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Baker SJ, Ellison DW, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612. https://doi.org/10.1038/ng.2611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, Zichner T, Lambert SR, Ryzhova M, Quang DA, Fontebasso AM, Stutz AM, Hutter S, Zuckermann M, Sturm D, Gronych J, Lasitschka B, Schmidt S, Seker-Cin H, Witt H, Sultan M, Ralser M, Northcott PA, Hovestadt V, Bender S, Pfaff E, Stark S, Faury D, Schwartzentruber J, Majewski J, Weber UD, Zapatka M, Raeder B, Schlesner M, Worth CL, Bartholomae CC, von Kalle C, Imbusch CD, Radomski S, Lawerenz C, van Sluis P, Koster J, Volckmann R, Versteeg R, Lehrach H, Monoranu C, Winkler B, Unterberg A, Herold-Mende C, Milde T, Kulozik AE, Ebinger M, Schuhmann MU, Cho YJ, Pomeroy SL, von Deimling A, Witt O, Taylor MD, Wolf S, Karajannis MA, Eberhart CG, Scheurlen W, Hasselblatt M, Ligon KL, Kieran MW, Korbel JO, Yaspo ML, Brors B, Felsberg J, Reifenberger G, Collins VP, Jabado N, Eils R, Lichter P, Pfister SM (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932. https://doi.org/10.1038/ng.2682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677. https://doi.org/10.1158/0008-5472.CAN-08-2097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405. https://doi.org/10.1007/s00401-011-0802-6

    Article  PubMed  CAS  Google Scholar 

  11. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, Tang B, Haupfear K, Punchihewa C, Easton J, Mulder H, Boggs K, Shao Y, Rusch M, Becksfort J, Gupta P, Wang S, Lee RP, Brat D, Peter Collins V, Dahiya S, George D, Konomos W, Kurian KM, McFadden K, Serafini LN, Nickols H, Perry A, Shurtleff S, Gajjar A, Boop FA, Klimo PD Jr, Mardis ER, Wilson RK, Baker SJ, Zhang J, Wu G, Downing JR, Tatevossian RG, Ellison DW (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131(6):833–845. https://doi.org/10.1007/s00401-016-1539-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cruz GR, Dias Oliveira I, Moraes L, Del Giudice Paniago M, de Seixas Alves MT, Capellano AM, Saba-Silva N, Cavalheiro S, Cerutti JM, Toledo SR (2014) Analysis of KIAA1549-BRAF fusion gene expression and IDH1/IDH2 mutations in low grade pediatric astrocytomas. J Neurooncol 117(2):235–242. https://doi.org/10.1007/s11060-014-1398-1

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Pathak P, Purkait S, Faruq M, Jha P, Mallick S, Suri V, Sharma MC, Suri A, Sarkar C (2015) Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet 208(3):91–95. https://doi.org/10.1016/j.cancergen.2015.01.009

    Article  PubMed  CAS  Google Scholar 

  14. Myung JK, Cho H, Park CK, Kim SK, Lee SH, Park SH (2012) Analysis of the BRAF(V600E) mutation in central nervous system tumors. Transl Oncol 5(6):430–436. https://doi.org/10.1593/tlo.12328

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nauen D, Haley L, Lin MT, Perry A, Giannini C, Burger PC, Rodriguez FJ (2016) Molecular analysis of pediatric oligodendrogliomas highlights genetic differences with adult counterparts and other pediatric gliomas. Brain Pathol 26(2):206–214. https://doi.org/10.1111/bpa.12291

    Article  PubMed  CAS  Google Scholar 

  16. Van den Bent MJ, Reni M, Gatta G, Vecht C (2008) Oligodendroglioma. Crit Rev Oncol Hematol 66(3):262–272. https://doi.org/10.1016/j.critrevonc.2007.11.007

    Article  PubMed  Google Scholar 

  17. Scheie D, Meling TR, Cvancarova M, Skullerud K, Mork S, Lote K, Eide TJ, Helseth E, Beiske K (2011) Prognostic variables in oligodendroglial tumors: a single-institution study of 95 cases. Neuro Oncol 13(11):1225–1233. https://doi.org/10.1093/neuonc/nor114

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):1–62. https://doi.org/10.1093/neuonc/not151

    Article  Google Scholar 

  19. Razack N, Baumgartner J, Bruner J (1998) Pediatric oligodendrogliomas. Pediatr Neurosurg 28(3):121–129. https://doi.org/10.1159/000028635

    Article  PubMed  CAS  Google Scholar 

  20. Hyder DJ, Sung L, Pollack IF, Gilles FH, Yates AJ, Davis RL, Boyett JM, Finlay JL (2007) Anaplastic mixed gliomas and anaplastic oligodendroglioma in children: results from the CCG 945 experience. J Neurooncol 83(1):1–8. https://doi.org/10.1007/s11060-006-9299-6

    Article  PubMed  Google Scholar 

  21. Zhang RQ, Shi Z, Chen H, Chung NY, Yin Z, Li KK, Chan DT, Poon WS, Wu J, Zhou L, Chan AK, Mao Y, Ng HK (2016) Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget 7(4):5030–5041. https://doi.org/10.18632/oncotarget.5456

    Article  PubMed  Google Scholar 

  22. Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH, Wang Z, Greer PK, Zhu H, Wang CY, Carpenter AB, Friedman H, Friedman AH, Keir ST, He J, He Y, McLendon RE, Herndon II JE, DD YHaB (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5(6): 1515–1525. https://doi.org/10.18632/oncotarget.1765

    Article  PubMed  PubMed Central  Google Scholar 

  23. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, Aldape K, Golfinos JG, Zagzag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadan R, Iavarone A (2012) Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337(6099):1231–1235. https://doi.org/10.1126/science.1220834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, Cheng AJ, Kunju LP, Siddiqui J, Tomlins SA, Wyngaard P, Sadis S, Roychowdhury S, Hussain MH, Feng FY, Zalupski MM, Talpaz M, Pienta KJ, Rhodes DR, Robinson DR, Chinnaiyan AM (2013) Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 3(6):636–647. https://doi.org/10.1158/2159-8290.CD-13-0050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang R, Wang L, Li Y, Hu H, Shen L, Shen X, Pan Y, Ye T, Zhang Y, Luo X, Zhang Y, Pan B, Li B, Li H, Zhang J, Pao W, Ji H, Sun Y, Chen H (2014) FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin Cancer Res 20(15):4107–4114. https://doi.org/10.1158/1078-0432.CCR-14-0284

    Article  PubMed  CAS  Google Scholar 

  26. Majewski IJ, Mittempergher L, Davidson NM, Bosma A, Willems SM, Horlings HM, de Rink I, Greger L, Hooijer GK, Peters D, Nederlof PM, Hofland I, de Jong J, Wesseling J, Kluin RJ, Brugman W, Kerkhoven R, Nieboer F, Roepman P, Broeks A, Muley TR, Jassem J, Niklinski J, van Zandwijk N, Brazma A, Oshlack A, van den Heuvel M, Bernards R (2013) Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J Pathol 230(3):270–276. https://doi.org/10.1002/path.4209

    Article  PubMed  CAS  Google Scholar 

  27. Parker BC, Engels M, Annala M, Zhang W (2014) Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol 232(1):4–15. https://doi.org/10.1002/path.4297

    Article  PubMed  CAS  Google Scholar 

  28. Shi YJ, Tsang JY, Ni YB, Chan SK, Chan KF, Tse GM (2015) FGFR1 is an adverse outcome indicator for luminal A breast cancers. Oncotarget 7(4):5063–5073. https://doi.org/10.18632/oncotarget.6563

    Article  PubMed Central  Google Scholar 

  29. Koole K, Brunen D, van Kempen PM, Noorlag R, de Bree R, Lieftink C, van Es RJ, Bernards R, Willems SM (2016) FGFR1 is a potential prognostic biomarker and therapeutic target in head and neck squamous cell carcinoma. Clin Cancer Res 22(15):3884–3893. https://doi.org/10.1158/1078-0432.CCR-15-1874

    Article  PubMed  CAS  Google Scholar 

  30. Becker AP, Scapulatempo-Neto C, Carloni AC, Paulino A, Sheren J, Aisner DL, Musselwhite E, Clara C, Machado HR, Oliveira RS, Neder L, Varella-Garcia M, Reis RM (2015) KIAA1549:BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. J Neuropathol Exp Neurol 74(7):743–754. https://doi.org/10.1097/NEN.0000000000000213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, Alon N, Kahn D, Fried I, Scheinemann K, Tsangaris E, Dirks P, Tressler R, Bouffet E, Jabado N, Tabori U (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17(14):4790–4798. https://doi.org/10.1158/1078-0432.CCR-11-0034

    Article  PubMed  CAS  Google Scholar 

  32. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18(2):184–187. https://doi.org/10.1038/ng0298-184

    Article  PubMed  CAS  Google Scholar 

  33. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PH (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2(5):367–376. https://doi.org/10.1016/S1535-6108(02)00180-0

    Article  PubMed  CAS  Google Scholar 

  34. Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y, Kudoh S, Tanaka K, Setoyama M, Nagamura F, Asano S, Kamada N (1999) Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93(4):1355–1363

    PubMed  CAS  Google Scholar 

  35. Rubin B, Chen C, Morgan T, Xiao S, Grier H, Kozakewich H, Perez-Atayde A, Fletcher J (1998) Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153(5):1451–1458. https://doi.org/10.1016/S0002-9440(10)65732-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wai D, Knezevich S, Lucas T, Jansen B, Kay R, Sorensen P (2000) The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19(7):906–915. https://doi.org/10.1038/sj.onc.1203396

    Article  PubMed  CAS  Google Scholar 

  37. Liu Q, Schwaller J, Kutok J, Cain D, Aster J, Williams I, Gilliland D (2000) Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 19(8):1827–1838. https://doi.org/10.1093/emboj/19.8.1827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Huse JT, Snuderl M, Jones DT, Brathwaite CD, Altman N, Lavi E, Saffery R, Sexton-Oates A, Blumcke I, Capper D, Karajannis MA, Benayed R, Chavez L, Thomas C, Serrano J, Borsu L, Ladanyi M, Rosenblum MK (2017) Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol 133(3):417–429. https://doi.org/10.1007/s00401-016-1639-9

    Article  PubMed  CAS  Google Scholar 

  39. Blumcke I, Giencke K, Wardelmann E, Beyenburg S, Kral T, Sarioglu N, Pietsch T, Wolf HK, Schramm J, Elger CE, Wiestler OD (1999) The CD34 epitope is expressed in neoplastic and mal- formative lesions associated with chronic, focal epilepsies. Acta Neuropathol 97(5):481–490. https://doi.org/10.1007/s004010051017

    Article  PubMed  CAS  Google Scholar 

  40. Blumcke I, Lobach M, Wolf HK, Wiestler OD (1999) Evidence for developmental precursor lesions in epilepsy-associated glioneuronal tumors. Microsc Res Tech 46(1): 53–58

    Article  PubMed  CAS  Google Scholar 

  41. Blumcke I, Wiestler OD (2002) Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 61(7):575–584. https://doi.org/10.1093/jnen/61.7.575

    Article  PubMed  Google Scholar 

  42. Deb P, Sharma MC, Tripathi M, Sarat Chandra P, Gupta A, Sarkar C (2006) Expression of CD34 as a novel marker for glioneuronal lesions associated with chronic intractable epilepsy. Neuropathol Appl Neurobiol 32(5):461–468. https://doi.org/10.1111/j.1365-2990.2006.00734.x

    Article  PubMed  CAS  Google Scholar 

  43. Reifenberger G, Kaulich K, Wiestler OD, Blumcke I (2003) Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuropathol 105(4): 358–364. https://doi.org/10.1007/s00401-002-0652-3

    Article  PubMed  CAS  Google Scholar 

  44. Sung CO, Suh YL, Hong SC (2011) CD34 and microtubule-associated protein 2 expression in dysembryoplastic neuroepithelial tumours with an emphasis on dual expression in non-specific types. Histopathology 59(2):308–317. https://doi.org/10.1111/j.1365-2559.2011.03936.x

    Article  PubMed  Google Scholar 

  45. Thom M, Toma A, An S, Martinian L, Hadjivassiliou G, Ratilal B, Dean A, McEvoy A, Sisodiya SM, Brandner S (2011) One hundred and one dysembryoplastic neuroepithelial tumors: an adult epilepsy series with immunohistochemical, molecular genetic, and clinical correlations and a review of the literature. J Neuropathol Exp Neurol 70(10): 859–878. https://doi.org/10.1097/NEN.0b013e3182302475

    Article  PubMed  CAS  Google Scholar 

  46. Sahm F, Reuss D, Koelsche C, Capper D, Schittenhelm J, Heim S, Jones DT, Pfister SM, Herold-Mende C, Wick W, Mueller W, Hartmann C, Paulus W, von Deimling A (2014) Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 128(4):551–559. https://doi.org/10.1007/s00401-014-1326-7

    Article  PubMed  CAS  Google Scholar 

  47. Qu M, Olofsson T, Sigurdardottir S, You C, Kalimo H, Nister M, Smits A, Ren ZP (2007) Genetically distinct astrocytic and oligodendroglial components in oligoastrocytomas. Acta Neuropathol 113(2):129–136. https://doi.org/10.1007/s00401-006-0142-0

    Article  PubMed  CAS  Google Scholar 

  48. Wilcox P, Li CC, Lee M, Shivalingam B, Brennan J, Suter CM, Kaufman K, Lum T, Buckland ME (2015) Oligoastrocytomas: throwing the baby out with the bathwater? Acta Neuropathol 129(1):147–149. https://doi.org/10.1007/s00401-014-1353-4

    Article  PubMed  Google Scholar 

  49. Huse JT, Diamond EL, Wang L, Rosenblum MK (2015) Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true “oligoastrocytoma”? Acta Neuropathol 129(1):151–153. https://doi.org/10.1007/s00401-014-1359-y

    Article  PubMed  Google Scholar 

  50. Jiao Y, Killela PJ, Reitman ZJ, Rasheed BA, Heaphy CM, de Wilde RF, Rodriguez FJ, Rosemberg S, Oba-Shinjo SM, Nagahashi Marie SK, Bettegowda C, Agrawal N, Lipp E, Pirozzi CJ, Lopez GY, He Y, Friedman HS, Friedman AH, Riggins GJ, Holdhoff M, Burger P, McLendon RE, Bigner DD, Vogelstein B, Meeker AK, Kinzler KW, Papadopoulos N, Diaz LA Jr (2012) Frequent ATRX, CIC, and FUBP1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722. https://doi.org/10.18632/oncotarget.588

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DT, Kool M, Northcott PA, Wiestler B, Bohmer K, Meyer J, Mawrin C, Hartmann C, Mittelbronn M, Platten M, Brokinkel B, Seiz M, Herold-Mende C, Unterberg A, Schittenhelm J, Weller M, Pfister S, Wick W, Korshunov A, von Deimling A (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126(6):907–915. https://doi.org/10.1007/s00401-013-1195-5

    Article  PubMed  CAS  Google Scholar 

  52. Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119(5):641–649. https://doi.org/10.1007/s00401-009-0634-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Horbinski C, Miller CR, Perry A (2011) Gone FISHing: clinical lessons learned in brain tumor molecular diagnostics over the last decade. Brain Pathol 21(1):57–73. https://doi.org/10.1111/j.1750-3639.2010.00453.x

    Article  PubMed  Google Scholar 

  54. Li Y-X, Shi Z, Aibaidula A, Chen H, Tang Q, Li KK, Chung NY, Chan DT, Poon WS, Mao Y, Wu J, Zhou L, Chan AK, Ng HK (2016) Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. Oncotarget 7(40):64615–64630. https://doi.org/10.18632/oncotarget.11378

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chan AK, Yao Y, Zhang Z, Chung NY, Liu JS, Li KK, Shi Z, Chan DT, Poon WS, Zhou L, Ng HK (2015) TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod Pathol 28(2):177–186. https://doi.org/10.1038/modpathol.2014.94

    Article  PubMed  CAS  Google Scholar 

  56. Chan AK, Yao Y, Zhang Z, Shi Z, Chen L, Chung NY, Liu JS, Li KK, Chan DT, Poon WS, Wang Y, Zhou L, Ng HK (2015) Combination genetic signature stratifies lower-grade gliomas better than histological grade. Oncotarget 6(25):20885–20901. https://doi.org/10.18632/oncotarget.4928

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R, Ling C, Pajovic S, Yu M, Rubin JB, Hukin J, Steinbok P, Bartels U, Bouffet E, Tabori U, Hawkins C (2016) Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 4(1):93–103. https://doi.org/10.1186/s40478-016-0353-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ryall S, Arnoldo A, Krishnatry R, Mistry M, Khor K, Sheth J, Ling C, Leung S, Zapotocky M, Guerreiro Stucklin A, Lassaletta A, Shago M, Tabori U, Hawkins C (2017) Multiplex detection of pediatric low-grade glioma signature fusion transcripts and duplications using the nanostring ncounter system. J Neuropathol Exp Neurol 76(7):562–570. https://doi.org/10.1093/jnen/nlx042

    Article  PubMed  Google Scholar 

  59. Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R, Stucklin AG, Zhukova N, Arnoldo A, Ryall S, Ling C, McKeown T, Loukides J, Cruz O, de Torres C, Ho CY, Packer RJ, Tatevossian R, Qaddoumi I, Harreld JH, Dalton JD, Mulcahy-Levy J, Foreman N, Karajannis MA, Wang S, Snuderl M, Rao AN, Giannini C, Kieran M, Ligon KL, Garre ML, Nozza P, Mascelli S, Raso A, Mueller S, Nicolaides T, Silva K, Perbet R, Vasiljevic A, Conter CF, Frappaz D, Leary S, Crane C, Chan A, Ng HK, Shi ZF, Mao Y, Finch E, Eisenstat D, Wilson B, Carret AS, Hauser P, Sumerauer D, Krskova L, Larouche V, Fleming A, Zelcer S, Jabado N, Rutka JT, Dirks P, Taylor MD, Chen S, Bartels U, Huang A, Ellison DW, Bouffet E, Hawkins C, Tabori U (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol. https://doi.org/10.1200/JCO.2016.71.8726

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Health and Medical Research Fund of Hong Kong (Grant No. 02133146), S.K. Yee Medical Foundation (2151229), and 973 Program (Grant No. 2015CB755500). We would like to give our great thanks to Professor Cynthia Hawkins for providing us the NanoString Panel in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsong Wu or Aden Ka-yin Chan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1. Correlations between clinicopathological factors and molecular variables. a

All biomarkers examined in our study were exclusively detected in tumors with classic oligodendroglial histology (p=0.002). b WHO grade II was associated with younger age of the patients at the time of diagnosis (p<0.001). c TERTp mutation was exclusively detected in anaplastic oligodendroglial tumors (p=0.005). d Among the six patients who experienced tumor recurrence, five cases occurred in the temporal lobe (p=0.08). −ve, negative; +ve, positive; O, oligodendroglioma, NOS; OA, oligoastrocytoma, NOS. Supplementary Figure 2. Kaplan-Meier survival analysis. a Grade III histology had a significantly shorter overall survival than those with grade II histology (p&#x003C;0.001). b Patients of age above 15 years showed trend of shorter overall survival (p=0.062). c Temporal lobe tumors exhibited a trend of shorter progression-free survival as compared to tumors of other locations (p=0.15). d-e No patient death or tumor recurrence was observed among these BRAF aberrated pediatric oligodendroglial tumors. f Among temporal lobe tumors, negative CD34 expression was associated with shorter progression-free survival (p=0.039). OS, overall survival; PFS, progression-free survival; -ve, negative; +ve, positive. Supplementary Figure 3. Representative photomicrographs of cases in our study. Oligodendroglioma – cases 20, 42, 49, and 52; Oligoastrocytoma – case 37; Anaplastic oligodendroglioma – case 6. Regrettably, the radiologic images of these cases were already archived by the hospitals. Supplementary Figure 4. Paired MRI (T1) images and H&E photos of cases in this study. (PPTX 41249 KB)

Supplementary material 2 (XLSX 29 KB)

Supplementary material 3 (XLSX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YX., Aibaidula, A., Shi, Z. et al. Oligodendrogliomas in pediatric and teenage patients only rarely exhibit molecular markers and patients have excellent survivals. J Neurooncol 139, 307–322 (2018). https://doi.org/10.1007/s11060-018-2890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2890-9

Keywords

Navigation