Skip to main content

Advertisement

Log in

Positron emission tomography of high-grade gliomas

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

High-grade gliomas [HGG (WHO grades III–IV)] are almost invariably fatal. Imaging of HGG is important for orientating diagnosis, prognosis and treatment planning and is crucial for development of novel, more effective therapies. Given the potentially unlimited number of usable tracing molecules and the elevated number of available radionuclides, PET allows gathering multiple informations on HGG including data on tissue metabolism and drug pharmacokinetics. PET studies on the diagnosis, prognosis and treatment of HGG carried out by most frequently used tracers and radionuclides (11C and 18F) and published in 2014 have been reviewed. These studies demonstrate that a thorough choice of tracers may confer elevated diagnostic and prognostic power to PET imaging of HGG. They also suggest that a combination of PET and MRI may give the most complete and reliable imaging information on HGG and that research on hybrid PET/MRI may be paying back in terms of improved diagnosis, prognosis and treatment planning of these deadly tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

10B:

Boron-10

11B:

Boron-11

11C:

Carbon-11

18F:

Fluorine-18

7Li:

Lithium-7

ACFET:

N-acetyl O-(2-fluoroethyl)-l-tyrosine

ADC:

Apparent diffusion coefficient

AMT:

α-Methyl-l-tryptophan

AUC:

Area under the curve

BNCT:

Boron neutron capture therapy

BPA-FR:

4-Borono-phenylalanine conjugated with fructose

BTV:

Biological tumour volume

CBV:

Cerebral blood volume

CHO:

Choline

CPT-11:

Irinotecan hydrochloride

CR:

Creatine

CT:

Computed tomography

CTV:

Clinical target volume

DIPG:

Diffuse intrinsic pontine glioma

DWI:

Diffusion-weighted MR imaging

FAZA:

Fluoroazomycin-arabinoside

FBPA:

4-Borono-2-18 F-fluoro-phenylalanine

FDA:

U.S. Food and drug administration

FDG:

2-Fluoro-2-deoxy-d-glucose

FDOPA:

3,4-Dihydroxy-6-fluoro-l-phenylalanine

FET:

O-(2-fluoroethyl)-l-tyrosine

FET-ALA:

O-(2-fluoroethyl)-l-tyrosyl-l-alanine

FET-GLY:

O-(2-fluoroethyl)-l-tyrosyl-l-glycine

LAIR:

Fluid-attenuated-inversion-recovery

FLT:

3′-Deoxy-3′-fluorothymidine

FMISO:

Fluoromisonidazole

FUS:

Focus ultrasound

GB:

Glioblastoma

GIC:

Glioma initiating cell(s)

GTV:

Gross tumour volume

HGG:

High grade gliomas

HV:

Hypoxic volume

IMRT:

Intensity-modulated radiation therapy

K:

Uptake rate constant (mL/g/min)

LGG:

Low-grade glioma

MET:

Methionine

MIB-1:

Mind bomb 1

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MTV:

Metabolic tumour volume

NADC:

Normalized ADC

NADCMIN:

Minimum NADC

OS:

Overall survival

PC:

Phosphatidylcholine

PD:

Pharmacodynamics

PET:

Positron emission tomography

PFS:

Progression-free survival

PK:

Pharmacokinetics

PPV:

Positive predictive values

PV:

Proliferation volume

PWI:

Perfusion-weighted MRI

RANO:

Response assessment in neuro-oncology

RCBF:

Regional cerebral blood flow

RCBV:

Regional CBV

RN:

Radiation necrosis

ROC:

Receiver operating characteristic

ROI:

Region(s) of interest

ROIB :

ROI in the normal brain

ROIT :

ROI in the tumour

RPI:

Radiological prognostic index

RT:

Radiation therapy

SUV:

Standardized uptake value

SUVMAX:

Maximum standardized uptake value

TAC:

Time-activity curve(s)

T/C:

Tumour to normal cerebellum ratio

T/N:

Tumour to normal brain tissue ratio

T/S:

Tumour to normal striatum ratio

T/W:

Tumour to normal white matter ratio

WHO:

World health organization

References

  1. Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM (2014) Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 6:149–170

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Heiss WD (2014) PET in gliomas. Overview of current studies. Nuklearmedizin 53:163–171

    Article  PubMed  Google Scholar 

  3. Dhermain F (2014) Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer 33:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Demetriades AK, Almeida AC, Bhangoo RS, Barrington SF (2014) Applications of positron emission tomography in neuro-oncology: a clinical approach. Surgeon 12:148–157

    Article  PubMed  Google Scholar 

  5. Sanchez-Crespo A, Andreo P, Larsson SA (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51

    Article  PubMed  Google Scholar 

  6. Christensen M, Kamson DO, Snyder M, Kim H, Robinette NL, Mittal S et al (2014) Tryptophan PET-defined gross tumor volume offers better coverage of initial progression than standard MRI-based planning in glioblastoma patients. J Radiat Oncol 3:131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamson DO, Lee TJ, Varadarajan K, Robinette NL, Muzik O, Chakraborty PK et al (2014) Clinical significance of tryptophan metabolism in the nontumoral hemisphere in patients with malignant glioma. J Nucl Med 55(10):1605–1610

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kamson DO, Mittal S, Robinette NL, Muzik O, Kupsky WJ, Barger GR et al (2014) Increased tryptophan uptake on PET has strong independent prognostic value in patients with a previously treated high-grade glioma. Neuro Oncol 16(10):1373–1383

    Article  PubMed  PubMed Central  Google Scholar 

  9. Santoni M, Nanni C, Bittoni A, Polonara G, Paccapelo A, Trignani R et al (2014) [(11) C]-methionine positron emission tomography in the postoperative imaging and followup of patients with primary and recurrent gliomas. ISRN Oncol 2014:463152

    PubMed  PubMed Central  Google Scholar 

  10. Choi H, Paeng JC, Cheon GJ, Park CK, Choi SH, Min HS et al (2014) Correlation of 11C-methionine PET and diffusion-weighted MRI: is there a complementary diagnostic role for gliomas? Nucl Med Commun 35:720–726

    Article  CAS  PubMed  Google Scholar 

  11. Tietze A, Boldsen JK, Mouridsen K, Ribe L, Dyve S, Cortnum S et al (2014) Spatial distribution of malignant tissue in gliomas: Correlations of 11C-L-methionine positron emission tomography and perfusion- and diffusion-weighted magnetic resonance imaging. Acta Radiol 56(9):1135–1144

    Article  PubMed  Google Scholar 

  12. Schinkelshoek M, Lopci E, Clerici E, Alongi F, Mancosu P, Rodari M et al (2014) Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors. Tumori 100:636–644

    PubMed  Google Scholar 

  13. Suchorska B, Jansen NL, Linn J, Kretzschmar H, Janssen H, Eigenbrod S et al (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:710–719

    Article  CAS  PubMed  Google Scholar 

  14. Navarria P, Reggiori G, Pessina F, Ascolese AM, Tomatis S, Mancosu P et al (2014) Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma. Radiother Oncol 112:425–429

    Article  PubMed  Google Scholar 

  15. Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K et al (2014) Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo) 54:280–289

    Article  Google Scholar 

  16. Wang X, Hu X, Xie P, Li W, Li X, Ma L (2015) Comparison of magnetic resonance spectroscopy and positron emission tomography in detection of tumor recurrence in posttreatment of glioma: A diagnostic meta-analysis. Asia Pac J Clin Oncol 11(2):97–105

    Article  PubMed  Google Scholar 

  17. Okita Y, Nonaka M, Shofuda T, Kanematsu D, Yoshioka E, Kodama Y et al (2014) C-methionine uptake correlates with MGMT promoter methylation in nonenhancing gliomas. Clin Neurol Neurosurg 125C:212–216

    Article  Google Scholar 

  18. Gibellini F, Smith TK (2010) The kennedy pathway–de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428

    Article  CAS  PubMed  Google Scholar 

  19. He H, Nilsson CL, Emmett MR, Marshall AG, Kroes RA, Moskal JR et al (2010) Glycomic and transcriptomic response of GSC11 glioblastoma stem cells to STAT3 phosphorylation inhibition and serum-induced differentiation. J Proteome Res 9:2098–2108

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Ma L, Wang X, Sun J, Wang S, Hu X (2014) C-choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumour Biol 35(12):12353–12360

    Article  CAS  PubMed  Google Scholar 

  21. Tran LB, Bol A, Labar D, Karroum O, Bol V, Jordan B et al (2014) Potential role of hypoxia imaging using (18)F-FAZA PET to guide hypoxia-driven interventions (carbogen breathing or dose escalation) in radiation therapy. Radiother Oncol 113:204–209

    Article  PubMed  Google Scholar 

  22. Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R et al (2014) Correlation between (18)F-fluoromisonidazole PET and expression of HIF-1alpha and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging 41:1870–1878

    Article  CAS  PubMed  Google Scholar 

  23. Hanaoka K, Watabe T, Naka S, Kanai Y, Ikeda H, Horitsugi G et al (2014) FBPA PET in boron neutron capture therapy for cancer: Prediction of B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res 4(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang FY, Chang WY, Li JJ, Wang HE, Chen JC, Chang CW (2014) Pharmacokinetic analysis and uptake of 18F-FBPA-fr after ultrasound-induced blood-brain barrier disruption for potential enhancement of boron delivery for neutron capture therapy. J Nucl Med 55:616–621

    Article  CAS  PubMed  Google Scholar 

  25. Bolcaen J, Descamps B, Deblaere K, Boterberg T, De Vos Pharm F, Kalala JP et al (2015) F-fluoromethylcholine (FCho), F-fluoroethyltyrosine (FET), and F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: a PET study. Nucl Med Biol 42(1):38–45

    Article  CAS  PubMed  Google Scholar 

  26. Imani F, Boada FE, Lieberman FS, Davis DK, Mountz JM (2014) Molecular and metabolic pattern classification for detection of brain glioma progression. Eur J Radiol 83:e100–e105

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herminghaus S, Pilatus U, Moller-Hartmann W, Raab P, Lanfermann H, Schlote W et al (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385–392

    Article  CAS  PubMed  Google Scholar 

  28. Yoon JH, Kim JH, Kang WJ, Sohn CH, Choi SH, Yun TJ et al (2014) Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 24:380–389

    Article  PubMed  Google Scholar 

  29. Jansen MH, Kloet RW, van Vuurden DG, van Zanten SEV, Witte BI, Goldman S et al (2014) 18 F-FDG PET standard uptake values of the normal pons in children: establishing a reference value for diffuse intrinsic pontine glioma. EJNMMI Res 4:8-219X-4-8

    Article  Google Scholar 

  30. Jansen NL, Suchorska B, Wenter V, Eigenbrod S, Schmid-Tannwald C, Zwergal A et al (2014) Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med 55:198–203

    Article  CAS  PubMed  Google Scholar 

  31. Goda JS, Dutta D, Raut N, Juvekar SL, Purandare N, Rangarajan V et al (2013) Can multiparametric MRI and FDG-PET predict outcome in diffuse brainstem glioma? A report from a prospective phase-II study. Pediatr Neurosurg 49:274–281

    Article  PubMed  Google Scholar 

  32. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T et al (2014) Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res 20:3550–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karunanithi S, Sharma P, Kumar A, Gupta DK, Khangembam BC, Ballal S et al (2014) Can (18)F-FDOPA PET/CT predict survival in patients with suspected recurrent glioma? A prospective study. Eur J Radiol 83:219–225

    Article  PubMed  Google Scholar 

  34. Morana G, Piccardo A, Milanaccio C, Puntoni M, Nozza P, Cama A et al (2014) Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med 55:718–723

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Lieberman BP, Ploessl K, Kung HF (2014) Synthesis and evaluation of (1)(8)F labeled FET prodrugs for tumor imaging. Nucl Med Biol 41:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sweeney R, Polat B, Samnick S, Reiners C, Flentje M, Verburg FA (2014) O-(2-[(18)F]fluoroethyl)-l-tyrosine uptake is an independent prognostic determinant in patients with glioma referred for radiation therapy. Ann Nucl Med 28:154–162

    Article  CAS  PubMed  Google Scholar 

  37. Munck Af Rosenschold P, Costa J, Engelholm SA, Lundemann MJ, Law I, Ohlhues L et al (2015) Impact of [18F]-fluoro-ethyL-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol 17:757–763

    Article  PubMed  Google Scholar 

  38. Piroth MD, Pinkawa M, Holy R, Klotz J, Schaar S, Stoffels G et al (2012) Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. results of a prospective phase II study. Strahlenther Onkol 188:334–339

    Article  CAS  PubMed  Google Scholar 

  39. Niyazi M, Jansen NL, Rottler M, Ganswindt U, Belka C (2014) Recurrence pattern analysis after re-irradiation with bevacizumab in recurrent malignant glioma patients. Radiat Oncol 9:299

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pyka T, Gempt J, Ringel F, Huttinger S, van Marwick S, Nekolla S et al (2014) Prediction of glioma recurrence using dynamic 18F-fluoroethyltyrosine PET. AJNR Am J Neuroradiol 35(10):1924–1929

    Article  CAS  PubMed  Google Scholar 

  41. Filss CP, Galldiks N, Stoffels G, Sabel M, Wittsack HJ, Turowski B et al (2014) Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55:540–545

    Article  CAS  PubMed  Google Scholar 

  42. Dunet V, Maeder P, Nicod-Lalonde M, Lhermitte B, Pollo C, Bloch J et al (2014) Combination of MRI and dynamic FET PET for initial glioma grading. Nuklearmedizin 53:155–161

    Article  CAS  PubMed  Google Scholar 

  43. Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53:207–214

    Article  CAS  PubMed  Google Scholar 

  44. Gempt J, Soehngen E, Forster S, Ryang YM, Schlegel J, Zimmer C et al (2014) Multimodal imaging in cerebral gliomas and its neuropathological correlation. Eur J Radiol 83:829–834

    Article  PubMed  Google Scholar 

  45. Dunkl V, Cleff C, Stoffels G, Judov N, Sarikaya-Seiwert S, Law I et al (2015) The usefulness of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med 56:88–92

    Article  CAS  PubMed  Google Scholar 

  46. Nedergaard MK, Kristoffersen K, Michaelsen SR, Madsen J, Poulsen HS, Stockhausen MT et al (2014) A. The use of longitudinal 18F-FET MicroPET imaging to evaluate response to irinotecan in orthotopic human glioblastoma multiforme xenografts. PLoS One 9:e100009

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao F, Cui Y, Li M, Fu Z, Chen Z, Kong L et al (2014) Prognostic value of 3′-deoxy-3′-18F-fluorothymidine ([(18)F] FLT PET) in patients with recurrent malignant gliomas. Nucl Med Biol 41:710–715

    Article  CAS  PubMed  Google Scholar 

  48. Wardak M, Schiepers C, Cloughesy TF, Dahlbom M, Phelps ME, Huang SC (2014) (1)(8)F-FLT and (1)(8)F-FDOPA PET kinetics in recurrent brain tumors. Eur J Nucl Med Mol Imaging 41:1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oborski MJ, Demirci E, Laymon CM, Lieberman FS, Mountz JM (2014) Assessment of early therapy response with 18F-FLT PET in glioblastoma multiforme. Clin Nucl Med 39:e431–e432

    Article  PubMed  Google Scholar 

  50. Oborski MJ, Laymon CM, Lieberman FS, Drappatz J, Hamilton RL, Mountz JM (2014) First use of (18)F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy. Brain Behav 4:312–315

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nensa F, Beiderwellen K, Heusch P, Wetter A (2014) Clinical applications of PET/MR: current status and future perspectives. Diagn Interv Radiol 20(5):438–447

    Article  PubMed  PubMed Central  Google Scholar 

  52. Puttick S, Bell C, Dowson N, Rose S, Fay M (2015) PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today 20:306–317

    Article  PubMed  Google Scholar 

  53. Hutterer M, Hattingen E, Palm C, Proescholdt MA, Hau P (2014) Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro Oncol 17(6):784–800

    Article  PubMed  Google Scholar 

  54. Preuss M, Werner P, Barthel H, Nestler U, Christiansen H, Hirsch FW et al (2014) Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst 30:1399–1403

    Article  PubMed  Google Scholar 

  55. Keen HG, Ricketts SA, Maynard J, Logie A, Odedra R, Shannon AM et al (2014) Examining changes in [18 F]FDG and [18 F]FLT uptake in U87-MG glioma xenografts as early response biomarkers to treatment with the dual mTOR1/2 inhibitor AZD8055. Mol Imaging Biol 16:421–430

    Article  PubMed  Google Scholar 

  56. Bell C, Rose S, Puttick S, Pagnozzi A, Poole CM, Gal Y et al (2014) Dual acquisition of (18)F-FMISO and (18)F-FDOPA. Phys Med Biol 59:3925–3949

    Article  PubMed  Google Scholar 

  57. Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, Czernin J, Kessler AF, Homola GA, Ernestus RI, Lohr M, Herrmann K et al (2014) Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med 55(10):1611–1616

    Article  CAS  PubMed  Google Scholar 

  58. Zhang K, Langen KJ, Neuner I, Stoffels G, Filss C, Galldiks N et al (2014) Relationship of regional cerebral blood flow and kinetic behaviour of O-(2-(18)F-fluoroethyl)-l-tyrosine uptake in cerebral gliomas. Nucl Med Commun 35:245–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work partially supported by Compagnia San Paolo, Turin, Italy (Grant No. 2010.1944 and Project” Terapie innovative per il glioblastoma”—PI: Prof. P. Malatesta). No potential conflict of interest regarding this article has been reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Frosina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frosina, G. Positron emission tomography of high-grade gliomas. J Neurooncol 127, 415–425 (2016). https://doi.org/10.1007/s11060-016-2077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2077-1

Keywords

Navigation