Skip to main content
Log in

TRIM28 as an independent prognostic marker plays critical roles in glioma progression

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Tripartite motif (TRIM) proteins are involved in tumorigenesis. Here, we examined the expression, biological function, and clinical significance of tripartite motif containing 28 (TRIM28) in glioma, a locally aggressive brain tumor. First, TRIM28 expression was significantly higher in glioma (n = 138) than in non-glioma controls (n = 6). TRIM28 expression was positively correlated with tumor malignancy, and associated with poor overall survival (OS) and progression-free survival (PFS). Notably, TRIM28 expression was negatively correlated with p21 expression in patients with glioblastoma multiforme (GBM). A multivariate analysis that included relevant measures indicated that high TRIM28 expression is an independent prognostic factor for poor OS and PFS in GBM patients. In experiments with cultured glioma cells, down-regulating TRIM28 with shRNA increased p21 expression, and induced cell cycle arrest at the G1 phase. In a xenograft model, down-regulating TRIM28 suppressed tumor growth. These results indicate that over-expression of TRIM28 is associated with poor outcome in glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TRIM:

Tripartite motif

TRIM28:

Tripartite motif containing 28

OS:

Overall survival

PFS:

Progression-free survival

GBM:

Glioblastoma multiforme

TMA:

Tissue microarray

IHC:

Immunohistochemistry

qRT-PCR:

Quantitative real-time polymerase chain reaction

TCGA:

The Cancer Genome Atlas

MIB-1:

Mind bomb E3 ubiquitin protein ligase 1

KPS:

Karnofsky performance status

MGMT:

O-6-methylguanine-DNA methyltransferase

STR:

Subtotal resection

GTR:

Gross total resection

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-oncology 14(Suppl 5):v1–v49

    Article  PubMed Central  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  3. Weissman AM (1997) Regulating protein degradation by ubiquitination. Immunol Today 18(4):189–198

    Article  CAS  PubMed  Google Scholar 

  4. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294(5540):173–177

    Article  CAS  PubMed  Google Scholar 

  5. Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alboran IM, Nakayama K, Nakayama KI (2007) Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 204(12):2875–2888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, Bessho Y, Kageyama R, Suda T, Nakayama KI (2004) Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 279(10):9417–9423

    Article  CAS  PubMed  Google Scholar 

  7. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20(9):2140–2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11(11):792–804

    Article  CAS  PubMed  Google Scholar 

  9. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66(4):675–684

    Article  PubMed  Google Scholar 

  10. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, Heery D, Gronemeyer H, Chambon P, Losson R (1995) The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 14(9):2020–2033

    PubMed Central  PubMed  Google Scholar 

  11. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB et al (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8(8):816–824

    CAS  PubMed  Google Scholar 

  12. Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, Murphy SE, Yang P, Pesatori AC, Consonni D, Bertazzi PA, Wacholder S et al (2008) Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One 3(2):e1651

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ho J, Kong JW, Choong LY, Loh MC, Toy W, Chong PK, Wong CH, Wong CY, Shah N, Lim YP (2009) Novel breast cancer metastasis-associated proteins. J Proteome Res 8(2):583–594

    Article  CAS  PubMed  Google Scholar 

  14. Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH, Huang CY (2007) Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics 8:140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens JA, Hoogsteden HC, Grosveld F, Philipsen S (2010) Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 5(4):e10312

    Article  PubMed Central  PubMed  Google Scholar 

  16. Yokoe T, Toiyama Y, Okugawa Y, Tanaka K, Ohi M, Inoue Y, Mohri Y, Miki C, Kusunoki M (2010) KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann Surg Oncol 17(3):821–828

    Article  PubMed  Google Scholar 

  17. Chen L, Chen DT, Kurtyka C, Rawal B, Fulp WJ, Haura EB, Cress WD (2012) Tripartite motif containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions. J Biol Chem 287(48):40106–40118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu B, Wang Z, Ghosh S, Zhou Z (2013) Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell 12(2):316–318

    Article  CAS  PubMed  Google Scholar 

  19. Mo LJ, Ye HX, Mao Y, Yao Y, Zhang JM (2013) B7-H4 expression is elevated in human U251 glioma stem-like cells and is inducible in monocytes cultured with U251 stem-like cell conditioned medium. Chin J Cancer 32(12):653–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jovcevska I, Zupanec N, Kocevar N, Cesselli D, Podergajs N, Stokin CL, Myers MP, Muyldermans S, Ghassabeh GH, Motaln H, Ruaro ME, Bourkoula E, Turnsek TL, Komel R (2014) TRIM28 and beta-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS One 9(11):e113688

    Article  PubMed Central  PubMed  Google Scholar 

  21. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ III (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10(16):2067–2078

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Rauscher FJ III, Cress WD, Chen J (2007) Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem 282(41):29902–29909

    Article  CAS  PubMed  Google Scholar 

  23. Rambaud J, Desroches J, Balsalobre A, Drouin J (2009) TIF1beta/KAP-1 is a coactivator of the orphan nuclear receptor NGFI-B/Nur77. J Biol Chem 284(21):14147–14156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chang CJ, Chen YL, Lee SC (1998) Coactivator TIF1beta interacts with transcription factor C/EBPbeta and glucocorticoid receptor to induce alpha1-acid glycoprotein gene expression. Mol Cell Biol 18(10):5880–5887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ III (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16(8):919–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schultz DC, Friedman JR, Rauscher FJ III (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15(4):428–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Santos J, Gil J (2014) TRIM28/KAP1 regulates senescence. Immunol Lett 162(1 Pt B):281–289

    Article  CAS  PubMed  Google Scholar 

  28. Lee YK, Thomas SN, Yang AJ, Ann DK (2007) Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem 282(3):1595–1606

    Article  CAS  PubMed  Google Scholar 

  29. Hoeller D, Hecker CM, Dikic I (2006) Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6(10):776–788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by China National Funds for Distinguished Young Scientists (81025013 to Ying Mao), National Natural and Science Foundation of China (81402053) and International Scientific and Technological Cooperation Projects (2014DFA31470 to Wei Zhu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Gong or Yu Yao.

Ethics declarations

Conflict of interest

None.

Additional information

Zeng-Xin Qi and Jia-Jun Cai have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, ZX., Cai, JJ., Chen, LC. et al. TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol 126, 19–26 (2016). https://doi.org/10.1007/s11060-015-1897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1897-8

Keywords

Navigation