Skip to main content

Advertisement

Log in

The role of STAT3 in tumor-mediated immune suppression

  • Editors' Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The role of tumor-induced immune modulation in cancer progression is currently a focus of investigation. The signal transducer and activator of transcription 3 (STAT3) is an established molecular hub of immunosuppression, and its signaling pathways are classically overactivated within malignancies. This article will review STAT3 operational mechanisms within the immune system and the tumor microenvironment, with a focus on therapeutic strategies that may impact outcomes for patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kortylewski M, Yu H (2007) Stat3 as a potential target for cancer immunotherapy. J Immunother 30(2):131–139. doi:10.1097/01.cji.0000211327.76266.65.00002371-200702000-00001

    Article  CAS  PubMed  Google Scholar 

  2. Kim JE, Patel M, Ruzevick J, Jackson CM, Lim M (2014) STAT3 activation in glioblastoma: biochemical and therapeutic implications. Cancers (Basel) 6(1):376–395. doi:10.3390/cancers6010376

    Article  CAS  Google Scholar 

  3. Rebe C, Vegran F, Berger H, Ghiringhelli F (2013) STAT3 activation: a key factor in tumor immunoescape. JAKSTAT 2(1):e23010. doi:10.4161/jkst.23010.2012JAKS0054R

    PubMed Central  PubMed  Google Scholar 

  4. Chen F, Xu Y, Luo Y, Zheng D, Song Y, Yu K, Li H, Zhang L, Zhong W, Ji Y (2010) Down-regulation of Stat3 decreases invasion activity and induces apoptosis of human glioma cells. J Mol Neurosci 40(3):353–359. doi:10.1007/s12031-009-9323-3

    Article  CAS  PubMed  Google Scholar 

  5. Wei Z, Jiang X, Qiao H, Zhai B, Zhang L, Zhang Q, Wu Y, Jiang H, Sun X (2013) STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal 25(4):931–938. doi:10.1016/j.cellsig.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  6. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008

    Article  CAS  PubMed  Google Scholar 

  7. Yu H, Jove R (2004) The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 4(2):97–105

    Article  CAS  PubMed  Google Scholar 

  8. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Tweardy DJ (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J Clin Invest 102(7):1385–1392. doi:10.1172/JCI3785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115. doi:10.1016/S1074-7613(00)80011-4

  10. Ding BB, Yu JJ, Yu RY, Mendez LM, Shaknovich R, Zhang Y, Cattoretti G, Ye BH (2008) Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 111(3):1515–1523. doi:10.1182/blood-2007-04-087734

  11. Doucette TA, Kong LY, Yang Y, Ferguson SD, Yang J, Wei J, Qiao W, Fuller GN, Bhat KP, Aldape K, Priebe W, Bogler O, Heimberger AB, Rao G (2012) Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro Oncol 14(9):1136–1145. doi:10.1093/neuonc/nos139/nos139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sherry MM, Reeves A, Wu JK, Cochran BH (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27(10):2383–2392. doi:10.1002/stem.185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bandaru A, Devalraju KP, Paidipally P, Dhiman R, Venkatasubramanian S, Barnes PF, Vankayalapati R, Valluri V (2014) Phosphorylated STAT3 and PD-1 regulate IL-17 production and IL-23 receptor expression in Mycobacterium tuberculosis infection. Eur J Immunol 44(7):2013–2024. doi:10.1002/eji.201343680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS (2013) The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3 K inhibition. Clin Cancer Res 19(3):598–609. doi:10.1158/1078-0432.CCR-12-2731

    Article  CAS  PubMed  Google Scholar 

  15. de Groot J, Liang J, Kong LY, Wei J, Piao Y, Fuller G, Qiao W, Heimberger AB (2012) Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 3(9):1036–1048

  16. Lin GS, Yang LJ, Wang XF, Chen YP, Tang WL, Chen L, Lin ZX (2014) STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma. Med Oncol 31(4):924. doi:10.1007/s12032-014-0924-5

    Article  PubMed  Google Scholar 

  17. Lin GS, Chen YP, Lin ZX, Wang XF, Zheng ZQ, Chen L (2014) STAT3 serine 727 phosphorylation influences clinical outcome in glioblastoma. Int J Clin Exp Pathol 7(6):3141–3149

    PubMed Central  PubMed  Google Scholar 

  18. Tu Y, Zhong Y, Fu J, Cao Y, Fu G, Tian X, Wang B (2011) Activation of JAK/STAT signal pathway predicts poor prognosis of patients with gliomas. Med Oncol 28(1):15–23. doi:10.1007/s12032-010-9435-1

    Article  CAS  PubMed  Google Scholar 

  19. Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14(24):8228–8235. doi:10.1158/1078-0432.CCR-08-1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12):1314–1321. doi:10.1038/nm1325

  21. Kinjyo I, Inoue H, Hamano S, Fukuyama S, Yoshimura T, Koga K, Takaki H, Himeno K, Takaesu G, Kobayashi T, Yoshimura A (2006) Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-β1. J Exp Med 203(4):1021–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51. doi:10.1038/nri1995

  23. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474

    Article  CAS  PubMed  Google Scholar 

  24. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. doi:10.1007/s00262-008-0523-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, Raje N, Munshi NC, Richardson PG, Anderson KC (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121(15):2975–2987. doi:10.1182/blood-2012-08-448548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med 13(7):828–835. doi:10.1038/nm1609

  28. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191. doi:10.1111/j.1600-065X.2008.00608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701. doi:10.4049/jimmunol.0900092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999

    Article  CAS  PubMed  Google Scholar 

  31. Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599. doi:10.1093/neuonc/nor042

  32. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65(20):9525–9535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. doi:10.1016/j.ejca.2006.01.003

  34. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17(1):6–10. doi:10.1016/j.jocn.2009.05.006

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322. doi:10.1007/s10555-006-9001-7

    Article  PubMed  Google Scholar 

  36. Lievense LA, Bezemer K, Aerts JG, Hegmans JP (2013) Tumor-associated macrophages in thoracic malignancies. Lung Cancer 80(3):256–262. doi:10.1016/j.lungcan.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  37. Ding P, Wang W, Wang J, Yang Z, Xue L (2014) Expression of Tumor-Associated Macrophage in Progression of Human Glioma. Cell Biochem Biophys. doi:10.1007/s12013-014-0105-3

    PubMed Central  Google Scholar 

  38. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467. doi:10.1002/glia.20863

    Article  PubMed  Google Scholar 

  40. Fujiwara Y, Komohara Y, Kudo R, Tsurushima K, Ohnishi K, Ikeda T, Takeya M (2011) Oleanolic acid inhibits macrophage differentiation into the M2 phenotype activation of STAT3. Oncol Rep 26(6):1533–1537. doi:10.3892/or.2011.1454

    CAS  PubMed  Google Scholar 

  41. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12(11):1113–1125. doi:10.1093/neuonc/noq082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593

    Article  PubMed  Google Scholar 

  43. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3 + regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12(18):5423–5434

    Article  CAS  PubMed  Google Scholar 

  44. El Andaloussi A, Lesniak MS (2007) CD4 + CD25 + FoxP3 + T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 83(2):145–152

    Article  PubMed  Google Scholar 

  45. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN (2008) Incidence and prognostic impact of FoxP3 + regulatory T cells in human gliomas. Clin Cancer Res 14(16):5166–5172. doi:10.1158/1078-0432.CCR-08-0320

    Article  CAS  PubMed  Google Scholar 

  46. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. doi:10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  47. Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, Sun Y (2010) Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J Cancer Res Clin Oncol 136(10):1585–1595. doi:10.1007/s00432-010-0816-9

    Article  CAS  PubMed  Google Scholar 

  48. Yue Q, Zhang X, Ye HX, Wang Y, Du ZG, Yao Y, Mao Y (2014) The prognostic value of Foxp3 + tumor-infiltrating lymphocytes in patients with glioblastoma. J Neurooncol 116(2):251–259. doi:10.1007/s11060-013-1314-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Doucette TA, Rao G, Rao A, Shen L, Aldape K, Wei J, Dziurzynski K, Gilbert M, Heimberger AB (2013) Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 1(2):112–122

    Article  CAS  PubMed  Google Scholar 

  50. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, Bellucci R, Raderschall E, Canning C, Soiffer RJ, Frank DA, Ritz J (2006) IL-2 regulates FOXP3 expression in human CD4+ CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108(5):1571–1579. doi:blood-2006-02-004747

  51. Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM (2014) Th17 cells in cancer: the ultimate identity crisis. Front Immunol 5:276. doi:10.3389/fimmu.2014.00276

    Article  PubMed Central  PubMed  Google Scholar 

  52. Gomez-Rodriguez J, Wohlfert EA, Handon R, Meylan F, Wu JZ, Anderson SM, Kirby MR, Belkaid Y, Schwartzberg PL (2014) Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. J Exp Med 211(3):529–543. doi:10.1084/jem.20131459

  53. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Vegran F, Hichami A, Ladoire S, Derangere V, Vincent J, Masson D, Robson SC, Eberl G, Pallandre JR, Borg C, Ryffel B, Apetoh L, Rebe C, Ghiringhelli F (2012) Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36(3):362–373. doi:10.1016/j.immuni.2011.12.019

    Article  CAS  PubMed  Google Scholar 

  54. Albesiano E, Han JE, Lim M (2010) Mechanisms of local immunoresistance in glioma. Neurosurg Clin N Am 21(1):17–29. doi:10.1016/j.nec.2009.08.008

    Article  PubMed  Google Scholar 

  55. Rolle CE, Sengupta S, Lesniak MS (2012) Mechanisms of immune evasion by gliomas. Adv Exp Med Biol 746:53–76. doi:10.1007/978-1-4614-3146-6_5

    Article  CAS  PubMed  Google Scholar 

  56. Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF, Okada H (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098. doi:10.4049/jimmunol.180.4.2089

  57. Bao JJ, Fokt I, Szymanski S, Priebe W (2005) Inhibition of constitutively active STAT3 by WP1066 suppresses proliferation and induces apoptosis in pancreatic cancer cells. Clin Cancer Res 11(24):9026S–9027S

    Google Scholar 

  58. Kupferman ME, Zhou G, Zhao M, Jasser S, Dakak-Yazici Y, Priebe W, Myers JN (2006) A novel inhibitor of STAT3 signaling in head and neck squamous cell carcinoma. In: 97th American Association of Cancer Research Annual Meeting, Washington, DC

  59. Kong LY, Abou-Ghazal MK, Wei J, Chakraborty A, Sun W, Qiao W, Fuller GN, Fokt I, Grimm EA, Schmittling RJ, Archer GE Jr, Sampson JH, Priebe W, Heimberger AB (2008) A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin Cancer Res 14(18):5759–5768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hatiboglu MA, Kong LY, Wei J, Wang Y, McEnery KA, Fuller GN, Qiao W, Davies MA, Priebe W, Heimberger AB (2012) The tumor microenvironment expression of p-STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. Int J Cancer 131(1):8–17. doi:10.1002/ijc.26307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, Kondo S, Priebe W, Kondo Y (2007) A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26(17):2435–2444. doi:10.1038/sj.onc.1210031

  62. Kong LY, Wu AS, Doucette T, Wei J, Priebe W, Fuller GN, Qiao W, Sawaya R, Rao G, Heimberger AB (2010) Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clin Cancer Res 16(23):5722–5733. doi:10.1158/1078-0432.CCR-10-1693

  63. Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, Priebe W, Heimberger AB (2007) A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67(20):9630–9636. doi:10.1158/0008-5472.CAN-07-1243

  64. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF, Heimberger AB (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9(1):67–78. doi:10.1158/1535-7163.MCT-09-0734

  65. Sen M, Grandis JR (2012) Nucleic acid-based approaches to STAT inhibition. JAKSTAT 1(4):285–291. doi:10.4161/jkst.22312

  66. Wang X, Crowe PJ, Goldstein D, Yang JL (2012) STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review). Int J Oncol 41(4):1181–1191. doi:10.3892/ijo.2012.1568

    CAS  PubMed  Google Scholar 

  67. Gu J, Li G, Sun T, Su Y, Zhang X, Shen J, Tian Z, Zhang J (2008) Blockage of the STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J Neurooncol 89(1):9–17. doi:10.1007/s11060-008-9590-9

    Article  CAS  PubMed  Google Scholar 

  68. Herrmann A, Priceman SJ, Kujawski M, Xin H, Cherryholmes GA, Zhang W, Zhang C, Lahtz C, Kowolik C, Forman SJ, Kortylewski M, Yu H (2014) CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest 124(7):2977–2987. doi:10.1172/JCI73174

    Article  PubMed Central  PubMed  Google Scholar 

  69. See AP, Han JE, Phallen J, Binder Z, Gallia G, Pan F, Jinasena D, Jackson C, Belcaid Z, Jeong SJ, Gottschalk C, Zeng J, Ruzevick J, Nicholas S, Kim Y, Albesiano E, Pardoll DM, Lim M (2012) The role of STAT3 activation in modulating the immune microenvironment of GBM. J Neurooncol 110(3):359–368. doi:10.1007/s11060-012-0981-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD, Yang Y, McEnery K, Jethwa K, Gjyshi O, Qiao W, Levine NB, Lang FF, Rao G, Fuller GN, Calin GA, Heimberger AB (2013) miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Casncer Res 73(13):3913–3926. doi:10.1158/0008-5472.CAN-12-4318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Fuh B, Sobo M, Cen L, Josiah D, Hutzen B, Cisek K, Bhasin D, Regan N, Lin L, Chan C, Caldas H, DeAngelis S, Li C, Li PK, Lin J (2009) LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br J Cancer 100(1):106–112. doi:10.1038/sj.bjc.6604793.6604793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Molavi O, Ma Z, Hamdy S, Lai R, Lavasanifar A, Samuel J (2008) Synergistic antitumor effects of CpG oligodeoxynucleotide and STAT3 inhibitory agent JSI-124 in a mouse melanoma tumor model. Immunol Cell Biol 86(6):506–514. doi:10.1038/icb.2008.27

    Article  CAS  PubMed  Google Scholar 

  73. Molavi O, Ma Z, Hamdy S, Lavasanifar A, Samuel J (2009) Immunomodulatory and anticancer effects of intra-tumoral co-delivery of synthetic lipid A adjuvant and STAT3 inhibitor, JSI-124. Immunopharmacol Immunotoxicol 31(2):214–221. doi:10.1080/08923970802380452

    Article  CAS  PubMed  Google Scholar 

  74. Kong LY, Gelbard A, Wei J, Reina-Ortiz C, Wang Y, Yang EC, Hailemichael Y, Fokt I, Jayakumar A, Qiao W, Fuller GN, Overwijk WW, Priebe W, Heimberger AB (2010) Inhibition of p-STAT3 enhances IFN-alpha efficacy against metastatic melanoma in a murine model. Clin Cancer Res 6(9):2550–2561. doi:10.1158/1078-0432.CCR-10-0279

    Article  Google Scholar 

Download references

Acknowledgments

We thank Audria Patrick for assistance with manuscript preparation and David M. Wildrick, Ph.D. for editorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherise D. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, S.D., Srinivasan, V.M. & Heimberger, A.B. The role of STAT3 in tumor-mediated immune suppression. J Neurooncol 123, 385–394 (2015). https://doi.org/10.1007/s11060-015-1731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1731-3

Keywords

Navigation