Skip to main content

Advertisement

Log in

Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Current therapy for glioblastoma multiforme (GBM) is largely ineffective, with nearly universal tumor recurrence. The failure of current therapy is primarily due to the lack of approaches for the efficient delivery of therapeutics to diffuse tumors in the brain. In our prior study, we developed brain-penetrating nanoparticles that are capable of penetrating brain tissue and distribute over clinically relevant volumes when administered via convection-enhanced delivery (CED). We demonstrated that these particles are capable of efficient delivery of chemotherapeutics to diffuse tumors in the brain, indicating that they may serve as a groundbreaking approach for the treatment of GBM. In the original study, nanoparticles in the brain were imaged using positron emission tomography (PET). However, clinical translation of this delivery platform can be enabled by engineering a non-invasive detection modality using magnetic resonance imaging (MRI). For this purpose, we developed chemistry to incorporate superparamagnetic iron oxide (SPIO) into the brain-penetrating nanoparticles. We demonstrated that SPIO-loaded nanoparticles, which retain the same morphology as nanoparticles without SPIO, have an excellent transverse (T2) relaxivity. After CED, the distribution of nanoparticles in the brain (i.e., in the vicinity of injection site) can be detected using MRI and the long-lasting signal attenuation of SPIO-loaded brain-penetrating nanoparticles lasted over a one-month timecourse. Development of these nanoparticles is significant as, in future clinical applications, co-administration of SPIO-loaded nanoparticles will allow for intraoperative monitoring of particle distribution in the brain to ensure drug-loaded nanoparticles reach tumors as well as for monitoring the therapeutic benefit with time and to evaluate tumor relapse patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mrugala MM, Chamberlain MC (2008) Mechanisms of disease: temozolomide and glioblastoma–look to the future. Nat Clin Pract Oncol 5:476–486. doi:10.1038/ncponc1155

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  4. Wick W, Weller M, van den Bent M, Stupp R (2010) Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 28: e188–189; author reply e190–182 doi:10.1200/JCO.2009.26.9027

  5. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi:10.1126/science.1164382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602. doi:10.1007/s00401-008-0455-2

    Article  CAS  PubMed  Google Scholar 

  7. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37:4587–4602. doi:10.1093/nar/gkp425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. doi:10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ (2010) A survey of glioblastoma genomic amplifications and deletions. J Neuro-Oncol 96:169–179. doi:10.1007/s11060-009-9959-4

    Article  CAS  Google Scholar 

  10. Cerami E, Demir E, Schultz N, Taylor BS, Sander C (2010) Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 5:e8918. doi:10.1371/journal.pone.0008918

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892. doi:10.1056/NEJMoa1113205

    Article  CAS  PubMed  Google Scholar 

  12. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Nat Acad Sci USA 110:4009–4014. doi:10.1073/pnas.1219747110

    Article  CAS  Google Scholar 

  13. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273. doi:10.1038/sj.onc.1207946

    Article  CAS  PubMed  Google Scholar 

  14. Clarke MF (2004) Neurobiology: at the root of brain cancer. Nature 432:281–282. doi:10.1038/432281a

    Article  CAS  PubMed  Google Scholar 

  15. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108. doi:10.1007/s00401-005-0991-y

    Article  PubMed  Google Scholar 

  16. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261. doi:10.1056/NEJMra061808

    Article  CAS  PubMed  Google Scholar 

  17. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472. doi:10.1016/j.cell.2007.04.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fan X, Salford LG, Widegren B (2007) Glioma stem cells: evidence and limitation. Semi Cancer Biol 17:214–218. doi:10.1016/j.semcancer.2006.04.002

    Article  CAS  Google Scholar 

  19. Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846. doi:10.1016/j.neuron.2008.05.031

    Article  CAS  PubMed  Google Scholar 

  20. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959. doi:10.1038/onc.2009.252

    Article  CAS  PubMed  Google Scholar 

  21. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995. doi:10.1093/brain/awq042

    Article  PubMed  Google Scholar 

  22. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59:1169–1180. doi:10.1002/glia.21136

    Article  PubMed  Google Scholar 

  23. Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Nat Acad Sci U S A 108:4274–4280. doi:10.1073/pnas.1016030108

    Article  CAS  Google Scholar 

  24. Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng M-Q, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE, Zhang Y, Sullivan DJ Jr, Piepmeier JM, Saltzman WM (2013) Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci U S A 110:11751–11756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103:5567–5572. doi:10.1073/pnas.0509425103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Nat Acad Sci U S A 91:2076–2080

    Article  CAS  Google Scholar 

  28. Sawyer AJ, Piepmeier JM, Saltzman WM (2006) New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 79:141–152

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK, Group PS (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro-oncology 12:871–881. doi:10.1093/neuonc/nop054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sampson JH, Archer G, Pedain C, Wembacher-Schroder E, Westphal M, Kunwar S, Vogelbaum MA, Coan A, Herndon JE, Raghavan R, Brady ML, Reardon DA, Friedman AH, Friedman HS, Rodriguez-Ponce MI, Chang SM, Mittermeyer S, Croteau D, Puri RK, Investigators PT (2010) Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosur 113:301–309. doi:10.3171/2009.11.JNS091052

    Article  Google Scholar 

  31. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nuclear Med Commun 29:193–207. doi:10.1097/MNM.0b013e3282f3a515

    Article  Google Scholar 

  32. Ratzinger G, Agrawal P, Korner W, Lonkai J, Sanders HM, Terreno E, Wirth M, Strijkers GJ, Nicolay K, Gabor F (2010) Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Biomaterials 31:8716–8723. doi:10.1016/j.biomaterials.2010.07.095

    Article  CAS  PubMed  Google Scholar 

  33. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70:6303–6312. doi:10.1158/0008-5472.CAN-10-1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Muldoon LL, Sandor M, Pinkston KE, Neuwelt EA (2005) Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57:785–796 discussion 785–796

    Article  PubMed  Google Scholar 

  35. Platt S, Nduom E, Kent M, Freeman C, Machaidze R, Kaluzova M, Wang L, Mao H, Hadjipanayis CG (2012) Canine model of convection-enhanced delivery of cetuximab-conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging. Clin Neurosur 59:107–113. doi:10.1227/NEU.0b013e31826989ef

    Article  Google Scholar 

  36. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674

    Article  CAS  PubMed  Google Scholar 

  37. Prince MR, Zhang HL, Chabra SG, Jacobs P, Wang Y (2003) A pilot investigation of new superparamagnetic iron oxide (ferumoxytol) as a contrast agent for cardiovascular MRI. J X-ray Sci Technol 11:231–240

    CAS  Google Scholar 

  38. Nguyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK (1999) Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging 10:468–473

    Article  CAS  PubMed  Google Scholar 

  39. Ragheb RR, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione JM, Fahmy TM (2013) Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn Reson Med 70:1748–1760. doi:10.1002/mrm.24622

    Article  CAS  PubMed  Google Scholar 

  40. Neeves KB, Lo CT, Foley CP, Saltzman WM, Olbricht WL (2006) Fabrication and characterization of microfluidic probes for convection enhanced drug delivery. J Control Release 111:252–262. doi:10.1016/j.jconrel.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  41. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cerebral Blood Flow Metabol 30:15–35. doi:10.1038/jcbfm.2009.192

    Article  CAS  Google Scholar 

  42. Saleh A, Schroeter M, Ringelstein A, Hartung HP, Siebler M, Modder U, Jander S (2007) Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38:2733–2737. doi:10.1161/strokeaha.107.481788

    Article  PubMed  Google Scholar 

  43. Dousset V, Delalande C, Ballarino L, Quesson B, Seilhan D, Coussemacq M, Thiaudiere E, Brochet B, Canioni P, Caille JM (1999) In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 41:329–333

    Article  CAS  PubMed  Google Scholar 

  44. Neuwelt EA, Varallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, Nesbit G, Stevens A, Jerosch-Herold M, Jacobs PM, Hoffman JM (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60:601–611. doi:10.1227/01.NEU.0000255350.71700.37 discussion 611–602

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a T-TARE award from the Yale Cancer Center (WMS & JP), grants from the US National Institutes of Health to WMS (CA149128) and FH (CA-140102, EB-011968, NS-052519),VABC Foundation (WMS, JP & JZ), Yale Center for Clinical Investigation (CTSA UL1 TR000142, JZ), American Cancer Society (IRG 58-012-55, JZ), and Matthew Larson Foundation (JZ).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbing Zhou.

Additional information

G. Strohbehn and D. Coman have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strohbehn, G., Coman, D., Han, L. et al. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. J Neurooncol 121, 441–449 (2015). https://doi.org/10.1007/s11060-014-1658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1658-0

Keywords

Navigation