Skip to main content
Log in

Glutamine synthetase functions as a negative growth regulator in glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Our recent study demonstrated that glutamine synthetase (GS) may not only serve as a glutamate-converting enzyme in glial cells, but may also function as a regulator of astrocyte migration after injury. In this report, we showed that GS expression increased in cultured rat C6 glioma cells that underwent long-term serially propagation. The stable overexpression of GS in C6 glioma cells resulted in growth arrest and motility suppression; however the stable knockdown of GS resulted in motility enhancement. In correlation with cell aggregation, N-cadherin levels increased at sites of cell–cell contact in C6 cells overexpressing GS, and decreased in C6 cells with stable GS knockdown; total N-cadherin expression levels remained unchanged in these cells. In addition, levels of p21, a potent cyclin-dependent kinase inhibitor, increased, while cyclin D1 levels decreased in C6 cells overexpressing GS. Our additional studies showed that N-cadherin-mediated cell–cell contacts were implicated in GS-induced cell growth arrest and impairment of cell migration, as evidenced by the inhibition of GS on cell growth and motility by the neutralizing anti-N-cadherin monoclonal antibody (GC-4 mAb). Collectively, these observations suggest a novel mechanism of growth regulation by GS that involves N-cadherin mediated cell–cell contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306:323–329

    Article  PubMed  CAS  Google Scholar 

  2. Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2:616–626

    Article  PubMed  CAS  Google Scholar 

  3. DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    Article  PubMed  CAS  Google Scholar 

  4. Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    Article  PubMed  CAS  Google Scholar 

  5. Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  PubMed  CAS  Google Scholar 

  6. Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36:471–482

    Article  PubMed  CAS  Google Scholar 

  7. Shaked I, Ben-Dror I, Vardimon L (2002) Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem 83:574–580

    Article  PubMed  CAS  Google Scholar 

  8. Zhuang Z, Qi M, Li J, Okamoto H, Xu DS, Iyer RR, Lu J, Yang C, Weil RJ, Vortmeyer A, Lonser RR (2011) Proteomic identification of glutamine synthetase as a differential marker for oligodendrogliomas and astrocytomas. J Neurosurg 115:789–795

    Article  PubMed  CAS  Google Scholar 

  9. Baber Z, Haghighat N (2010) Glutamine synthetase gene expression and glutamate transporters in C6-glioma cells. Metab Brain Dis 25:413–418

    Article  PubMed  CAS  Google Scholar 

  10. Vardimon L (2000) Neuroprotection by glutamine synthetase. Isr Med Assoc J 2(Suppl):46–51

    PubMed  Google Scholar 

  11. Zou J, Wang YX, Mu HJ, Xiang J, Wu W, Zhang B, Xie P (2011) Down-regulation of glutamine synthetase enhances migration of rat astrocytes after in vitro injury. Neurochem Int 58:404–413

    Article  PubMed  CAS  Google Scholar 

  12. Tsai YJ, Chen IL, Horng LY, Wu RT (2002) Induction of differentiation in rat C6 glioma cells with Saikosaponins. Phytother Res 16:117–121

    Article  PubMed  CAS  Google Scholar 

  13. Zou J, Wang YX, Dou FF, Lu HZ, Ma ZW, Lu PH, Xu XM (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56:577–584

    Article  PubMed  CAS  Google Scholar 

  14. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  PubMed  CAS  Google Scholar 

  15. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  PubMed  CAS  Google Scholar 

  16. Huang ZY, Wu Y, Hedrick N, Gutmann DH (2003) T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21(CIP1/WAF1) expression. Mol Cell Biol 23:566–578

    Article  PubMed  CAS  Google Scholar 

  17. Parker KK, Norenberg MD, Vernadakis A (1980) “Transdifferentiation” of C6 glial cells in culture. Science 208:179–181

    Article  PubMed  CAS  Google Scholar 

  18. Kazazoglou T, Fleischer-Lambropoulos E, Geladopoulos T, Kentroti S, Stefanis C, Vernadakis A (1996) Differential responsiveness of late passage C-6 glial cells and advanced passages of astrocytes derived from aged mouse cerebral hemispheres to cytokines and growth factors: glutamine synthetase activity. Neurochem Res 21:609–614

    Article  PubMed  CAS  Google Scholar 

  19. Moutsatsou P, Kazazoglou T, Fleischer-Lambropoulos H, Psarra AM, Tsiapara A, Sekeris CE, Stefanis C, Vernadakis A (2000) Expression of the glucocorticoid receptor in early and late passage C-6 glioma cells and in normal astrocytes derived from aged mouse cerebral hemispheres. Int J Dev Neurosci 18:329–335

    Article  PubMed  CAS  Google Scholar 

  20. Gawronski JD, Benson DR (2004) Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection. Anal Biochem 327:114–118

    Article  PubMed  CAS  Google Scholar 

  21. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  PubMed  CAS  Google Scholar 

  22. Su Z, Cao L, Zhu Y, Liu X, Huang Z, Huang A, He C (2007) Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci 120:1877–1887

    Article  PubMed  CAS  Google Scholar 

  23. Asano K, Duntsch CD, Zhou Q, Weimar JD, Bordelon D, Robertson JH, Pourmotabbed T (2004) Correlation of N-cadherin expression in high grade gliomas with tissue invasion. J Neurooncol 70:3–15

    Article  PubMed  Google Scholar 

  24. Gavard J, Marthiens V, Monnet C, Lambert M, Mege RM (2004) N-cadherin activation substitutes for the cell contact control in cell cycle arrest and myogenic differentiation: involvement of p120 and beta-catenin. J Biol Chem 279:36795–36802

    Article  PubMed  CAS  Google Scholar 

  25. De Wever O, Westbroek W, Verloes A, Bloemen N, Bracke M, Gespach C, Bruyneel E, Mareel M (2004) Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding. J Cell Sci 117:4691–4703

    Article  PubMed  Google Scholar 

  26. Diamond ME, Sun L, Ottaviano AJ, Joseph MJ, Munshi HG (2008) Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium. J Cell Sci 121:2197–2207

    Article  PubMed  CAS  Google Scholar 

  27. Demali KA (2004) Vinculin–a dynamic regulator of cell adhesion. Trends Biochem Sci 29:565–567

    Article  PubMed  CAS  Google Scholar 

  28. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–270

    Article  PubMed  CAS  Google Scholar 

  29. Saitoh F, Araki T (2010) Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation. J Neurosci 30:1204–1212

    Article  PubMed  CAS  Google Scholar 

  30. Stockinger A, Eger A, Wolf J, Beug H, Foisner R (2001) E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol 154:1185–1196

    Article  PubMed  CAS  Google Scholar 

  31. Liu F, Jia L, Thompson-Baine AM, Puglise JM, Ter Beest MB, Zegers MM (2010) Cadherins and Pak1 control contact inhibition of proliferation by Pak1-betaPIX-GIT complex-dependent regulation of cell-matrix signaling. Mol Cell Biol 30:1971–1983

    Article  PubMed  CAS  Google Scholar 

  32. George SJ, Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14:100–105

    Article  PubMed  CAS  Google Scholar 

  33. Bendjennat M, Boulaire J, Jascur T, Brickner H, Barbier V, Sarasin A, Fotedar A, Fotedar R (2003) UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell 114:599–610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Science Foundation of China (NFSC) grant (81000527, 81100547); Natural Science Foundation of Jiangsu Province (NFSJS) grant (BK2010159); Science and Technology Development Program of Huadong Sanitarium (201001). The authors thank the International Science Editing Company for their language editing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zou or Chunxing Liu.

Additional information

Ying Yin, Weifeng Sun, and Jie Xiang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Sun, W., Xiang, J. et al. Glutamine synthetase functions as a negative growth regulator in glioma. J Neurooncol 114, 59–69 (2013). https://doi.org/10.1007/s11060-013-1168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1168-5

Keywords

Navigation