Skip to main content
Log in

Modulation of pediatric brain tumor autophagy and chemosensitivity

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Brain and spinal tumors are the second most common malignancies in childhood after leukemia, and they remain the leading cause of death from childhood cancer. Autophagy is a catabolic cellular process that is thought to regulate chemosensitivity, however its role in pediatric tumors is unknown. Here we present studies in pediatric medulloblastoma cell lines (DAOY, ONS76) and atypical teratoid/rhabdoid tumor cell lines (BT-16, BT-12) to test this role. Autophagy was inhibited using siRNA against autophagy-related genes ATG12 and ATG7 or pharmacologically induced or inhibited using rapamycin and chloroquine to test the effect of autophagy on chemosensitivity. Autophagic flux was measured using Western blot analysis of LC3-II and p62 and cell viability was determined using MTS assays and clonogenic growth. We found that when pediatric brain tumor cells under starvation stress, exposed to known autophagy inducers such as rapamycin, or treated with current chemotherapeutics (lomustine, cisplatin), all stimulate autophagy. Silencing ATG12 and ATG7 or exposure to a known autophagy inhibitor, chloroquine, could inhibit this autophagy increase; however, the effect of autophagy on tumor cell killing was small. These results may have clinical relevance in the future planning of therapeutic regimens for pediatric brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mizushima N (2007) Autophagy process and function. Genes Dev 21(22):2861–2873

    Article  PubMed  CAS  Google Scholar 

  2. Qu X et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    PubMed  CAS  Google Scholar 

  3. Yue Z et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082

    Article  PubMed  CAS  Google Scholar 

  4. Marino G et al (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282(25):18573–18583

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151

    Article  PubMed  CAS  Google Scholar 

  6. Liang C et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7):688–699

    Article  PubMed  CAS  Google Scholar 

  7. Maiuri MC et al (2009) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16(1):87–93

    Article  PubMed  CAS  Google Scholar 

  8. Degenhardt K et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    Article  PubMed  CAS  Google Scholar 

  9. Kenific CM, Thorburn A, Debnath J (2010) Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 22(2):241–245

    Article  PubMed  CAS  Google Scholar 

  10. Takamura A et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800

    Article  PubMed  CAS  Google Scholar 

  11. Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66(19):9349–9351

    Article  PubMed  CAS  Google Scholar 

  12. Kondo Y et al (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734

    Article  PubMed  CAS  Google Scholar 

  13. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Escudero V, Gargini R (2008) Autophagy induction as an efficient strategy to eradicate tumors. Autophagy 4(7):923–925

    PubMed  CAS  Google Scholar 

  15. Lin MH, Liu SY, Liu YC (2008) Autophagy induction by a natural ingredient of areca nut. Autophagy 4(7):967–968

    PubMed  CAS  Google Scholar 

  16. Turcotte S, Sutphin PD, Giaccia AJ (2008) Targeted therapy for the loss of von Hippel–Lindau in renal cell carcinoma: a novel molecule that induces autophagic cell death. Autophagy 4(7):944–946

    PubMed  CAS  Google Scholar 

  17. Thorburn J et al (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16(1):175–183

    Article  PubMed  CAS  Google Scholar 

  18. Amaravadi RK et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2):326–336

    Article  PubMed  CAS  Google Scholar 

  19. Carew JS et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110(1):313–322

    Article  PubMed  CAS  Google Scholar 

  20. Park MA et al (2008) Regulation of autophagy by ceramide-CD95-PERK signaling. Autophagy 4(7):929–931

    PubMed  CAS  Google Scholar 

  21. Wu H et al (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66(6):3015–3023

    Article  PubMed  CAS  Google Scholar 

  22. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    PubMed  CAS  Google Scholar 

  23. Ito H et al (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26(5):1401–1410

    PubMed  CAS  Google Scholar 

  24. Wu H et al (2009) Silencing of elongation factor-2 kinase potentiates the effect of 2-deoxy-d-glucose against human glioma cells through blunting of autophagy. Cancer Res 69(6):2453–2460

    Article  PubMed  CAS  Google Scholar 

  25. Levy JM, Thorburn A (2011) Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 131(1):130–141

    Article  PubMed  CAS  Google Scholar 

  26. Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    Article  PubMed  CAS  Google Scholar 

  27. Fimia GM et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148):1121–1125

    PubMed  CAS  Google Scholar 

  28. Shingu T et al (2009) Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int J Cancer 124(5):1060–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JM Mulcahy Levy is supported by a St. Baldrick’s Foundation Fellowship. Additional support provided by The Morgan Adams Foundation and NIH grant CA150925. We thank Dr. Rajeev Vibhakar for providing the ONS76 cell line and Dr. Peter Houghton for providing the BT-16 and BT-12 cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Thorburn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, J.M.M., Thorburn, A. Modulation of pediatric brain tumor autophagy and chemosensitivity. J Neurooncol 106, 281–290 (2012). https://doi.org/10.1007/s11060-011-0684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0684-4

Keywords

Navigation