Skip to main content

Advertisement

Log in

Study of the telomerase hTERT fraction, PCNA and CD34 expression on pituitary adenomas. Association with clinical and demographic characteristics

  • Lab investigation-human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To determine the frequency of human telomerase reverse transcriptase (hTERT) catalytic fraction expression and its association with clinical and demographic characteristics of the patient, as well as with the expression of CD34 and proliferating cell nuclear antigen (PCNA) indexes on adenohypophyseal hormone tissues. A transverse study was realized with 49 cases of hypophyseal adenoma with analysis type cases and controls. The different adenohypophyseal hormones [prolactin (PRL), growth hormone (GH), follicle stimulating hormone, luteinizing hormone, thyroid gland stimulant hormone, adrenocorticotropic hormone (ACTH)], the catalytic fraction of the telomerase hTERT, the PCNA index and the CD34 density were determined by means of immunohistochemical techniques. The clinical, demographic and histopathological characteristics of the patients with and without hTERT expression were compared by means of Pearson’s Chi-squared, Fisher’s exact test and Mann–Whitney’s U. Twenty-eight point six percent of the adenomas had positive expression for hTERT. The variables significantly correlated with hTERT’s expression were younger age of presentation, diagnostic of adenoma producer, higher PCNA index, higher CD34 density, increased GH on serum and the expression on PRL tissue, GH and ACTH. Tobacco history had a negative association with hTERT’s expression. The telomerase could be a marker of cellular proliferation associated with angiogenesis and hormonal activity. Evaluation of these variables could provide information about their biological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hardy J (1969) Transphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg 16:185–217

    PubMed  CAS  Google Scholar 

  2. Kovacs K, Horvath E, Vidal S (2001) Classification of pituitary adenomas. J Neurooncol 54:121–127

    Article  PubMed  CAS  Google Scholar 

  3. Asa SL (1994) Disease of the pituitary. Neuropathology 5:71–95

    CAS  Google Scholar 

  4. Ahmed A, Tollefsbol T (2003) Telomeres, telomerase, and telomerase inhibition: clinical implications for cancer. J Am Geriatr Soc 51:116–122

    Article  PubMed  Google Scholar 

  5. Nakatani K, Yoshimi N, Mori H, Yoshimura S, Sakai H, Shinoda J, Sakai N (1997) The significant role of telomerase activity in human brain tumors. Cancer 80:471–476

    Article  PubMed  CAS  Google Scholar 

  6. Hiraga S, Ohnishi T, Izumoto S, Miyahara E, Kanemura Y, Matsumura H, Arita N (1998) Telomerase activity and alterations in telomere length in human brain tumors. Cancer Res 58:2117–2125

    PubMed  CAS  Google Scholar 

  7. Toh WH, Kyo S, Sabapathy K (2005) Relief of p53-mediated telomerase suppression by p73. J Biol Chem 280:17329–17338

    Article  PubMed  CAS  Google Scholar 

  8. DeMasters BK, Markham N, Lillehei KO, Shroyer KR (1997) Differential telomerase expression in human primary intracranial tumor. Am J Clin Pathol 107:548–554

    PubMed  CAS  Google Scholar 

  9. Hiyama E, Hiyama K, Nishiyama M, Reynolds CP, Shay JW, Yokoyama T (2003) Differential gene expression profiles between neuroblastomas with high telomerase activity and low telomerase activity. J Pediatr Surg 38:1730–1734

    Article  PubMed  Google Scholar 

  10. Didiano D, Shalaby T, Lang D, Grotzer MA (2004) Telomere maintenance in childhood primitive neuroectodermal brain tumors. Neuro-oncology 6:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Bratthauer GL, Adams LR (1994) Immunohistochemistry: antigen detection in tissue. In: Mikel UV (ed) Advanced laboratory methods in histology and pathology. Armed Forces Institute of Pathology, American Registry of Pathology, Washington

    Google Scholar 

  12. Arrieta O, Guevara P, Tamariz J, Rembao D, Rivera E, Sotelo J (2002) Antiproliferative effect of thalidomide alone and combined with carmustine against C6 rat glioma. Int J Exp Pathol 83:99–104

    Article  PubMed  CAS  Google Scholar 

  13. Li TJ, Browne RM, Matthews JB (1994) Quantification of PCNA+ cells within odontogenic jaw cyst epithelium. J Oral Pathol Med 23:184–189

    Article  PubMed  CAS  Google Scholar 

  14. Xia Y-P, Zhao Y, Marcus J, Jimenez PA, Ruben SM, Moore PA, Khan F, Mustoe TA (1999) Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol 188:431–438

    Article  PubMed  CAS  Google Scholar 

  15. Niveiro M, Aranda FI, Peiró G, Alenda C, Pico A (2005) Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol 36:1090–1095

    Article  PubMed  CAS  Google Scholar 

  16. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  17. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    PubMed  CAS  Google Scholar 

  18. Kotoula V, Barbanis S, Nokolakaki E, Koufoyannis D, Papadimitriou CS, Karkavelas G (2004) Relative expression of human telomerase catalytic subunit (hTERT) transcripts in astrocytic gliomas. Acta Neuropathol (Berl) 107:443–451

    Article  CAS  Google Scholar 

  19. Dong CK, Masutomi K, Hahn WC (2005) Telomerase: regulation, function and transformation. Crit Rev Oncol Hematol 54:85–93

    Article  PubMed  Google Scholar 

  20. Sebastian S, Grammatica L, Paradiso A (2005) Telomeres, telomerase and oral cancer. Int J Oncol 27:1583–1596

    PubMed  CAS  Google Scholar 

  21. Langford LA, Piatyszek MA, Xu R, Schold SC Jr, Shay JW (1995) Telomerase activity in human brain tumours. Lancet 346:1267–1268

    Article  PubMed  CAS  Google Scholar 

  22. Yoshino A, Katayama Y, Fukushima T, Watanabe T, Komine C, Yokoyama T, Kusama K, Moro I (2003) Telomerase activity in pituitary adenomas: significance of telomerase expression in predicting pituitary adenoma recurrence. J Neurooncol 63:155–162

    Article  PubMed  Google Scholar 

  23. Tanaka Y, Hongo K, Tada T, Sakai K, Kakizawa Y, Kobayashi S (2003) Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and MIB-1 index. J Neurosurg 98:359–365

    PubMed  Google Scholar 

  24. Harada K, Arita K, Kurisu K, Tahara H (2000) Telomerase activity and the expression of telomerase components in pituitary adenoma with malignant transformation. Surg Neurol 53:267–274

    Article  PubMed  CAS  Google Scholar 

  25. Vidal S, Kovacs K, Horvath E, Scheithauer BW, Kuroki T, Lloyd RV (2001) Microvessel density in pituitary adenomas and carcinoma. Virchows Arch 438:595–602

    Article  PubMed  CAS  Google Scholar 

  26. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA (2000) Angiogenesis in pituitary adenomas-relationship to endocrine function, treatment and outcome. J Endocrinol 165:475–481

    Article  PubMed  CAS  Google Scholar 

  27. Itoh J, Serizawa A, Kawai K, Ishii Y, Teramoto A, Osamura RY (2003) Vascular networks and endothelial cells in the rat experimental pituitary glands and in the human pituitary adenomas. Microsc Res Tech 60:231–235

    Article  PubMed  Google Scholar 

  28. Turner HE, Harris AL, Melmed S, Wass JA (2003) Angiogenesis in endocrine tumors. Endocr Rev 24:600–632

    Article  PubMed  CAS  Google Scholar 

  29. Yamada S, Takada K (2003) Angiogenesis in pituitary adenomas. Microsc Res Tech 60:236–243

    Article  PubMed  CAS  Google Scholar 

  30. Tella JOI, Herculano MA, Delcelo R (2000) Pituitary adenomas: relationship between invasiveness and proliferative cell nuclear index. Arq Neuropsiquiatr 58:1055–1063

    Google Scholar 

  31. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326:515–517

    Article  PubMed  CAS  Google Scholar 

  32. Blevins LS Jr, Verity DK, Allen G (1998) Aggressive pituitary tumors. Oncology 12:1307–1312

    PubMed  Google Scholar 

  33. Hsu DW, Hakim F, Biller BM, de la Monte S, Zervas NT, Klibanski A, Hedley-Whyte ET (1993) Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg 78:753–761

    Article  PubMed  CAS  Google Scholar 

  34. Schreiber S, Saeger W, Ludecke DK (1999) Proliferation markers in different types of clinically non-secreting pituitary adenomas. Pituitary 1:213–220

    Article  PubMed  CAS  Google Scholar 

  35. Klencki M, Kurnatowska I, Slowinska-Klencka D, Lewinski A, Pawlikowski M (2001) Correlation between PCNA expression and AgNOR dots in pituitary adenomas. Endocr Pathol 12:163–169

    Article  PubMed  CAS  Google Scholar 

  36. Nose-Alberti V, Mesquita MI, Martin LC, Kayath MJ (1998) Adrenocorticotropin-producing pituitary carcinoma with expression of c-erbB-2 and high PCNA index: a comparative study with pituitary adenomas and normal pituitary tissues. Endocr Pathol 9:53–62

    PubMed  CAS  Google Scholar 

  37. Hashimoto K, Nagano I, Asaba K, Inoue M, Nishioka T, Takao T, Nakajo T, Mori T, Kurisaka M, Otsuka F (2000) Significant gene expression of insulin-like growth factor II and proliferating cell nuclear antigen in a rapidly growing recurrent pituitary acth-secreting adenoma. Horm Res 54:198–202

    Article  PubMed  CAS  Google Scholar 

  38. Bertholon-Gregoire M, Trouillas J, Guigard MP, Loras B, Tourniaire J (1999) Mono and plurihormonal thyrotropic pituitary adenoma pathological, hormonal and clinical studies in 12 patients. Eur J Endocrinol 140:519–527

    Article  PubMed  CAS  Google Scholar 

  39. Wolfsberger S, Wunderer J, Zachenhofer I, Czech T, Bocher-Schwarz HG, Hainfellner J, Knosp E (2004) Expression of cell proliferation markers in pituitary adenomas-correlation and clinical relevance of MIB-1 and anti-topoisomerase—IIalpha. Acta Neurochir (Wien) 146:831–839

    CAS  Google Scholar 

  40. Thapar K, Kovacs K, Scheithauer BW, Stefaneanu L, Horvath E, Pernicone PJ, Murray D, Laws ER Jr (1996) Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38:99–106

    Article  PubMed  CAS  Google Scholar 

  41. Yonezawa K, Tamaki N, Kokunai T (1997) Clinical features and growth fractions of pituitary adenomas. Surg Neurol 48:494–500

    Article  PubMed  CAS  Google Scholar 

  42. Autrup H (1993) Transplacental transfer of genotoxins and transplacental carcinogénesis. Environ Health Perspect 101:33–38

    Article  PubMed  CAS  Google Scholar 

  43. Birrenbach T, Bocker U (2004) Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis 10:848–859

    Article  PubMed  Google Scholar 

  44. Lynch HT, Brand RE, Lynch JF, Fusaro RM, Kern SE (2002) Hereditary factors in pancreatic cancer. J Hepatobiliary Pancreat Surg 9:12–31

    Article  PubMed  Google Scholar 

  45. Razani-Boroujerdi S, Sopori ML (2006) Early manifestations of NNK-induced lung cancer: role of lung immunity in tumor susceptibility. Am J Respir Cell Mol Biol (Epub ahead of print)

  46. Sasco AJ, Vainio H (1999) From in utero and childhood exposure to parental smoking to childhood cancer: a possible link and the need for action. Hum Exp Toxicol 18:192–201

    Article  PubMed  CAS  Google Scholar 

  47. Phillips LE, Longstreth WT Jr, Koepsell T, Custer BS, Kukull WA, van Belle G (2005) Active and passive cigarette smoking and risk of intracranial meningioma. Neuroepidemiology 24:117–122

    Article  PubMed  Google Scholar 

  48. Hurley SF, McNeil JJ, Donnan GA, Forbes A, Salzberg M, Giles GG (1996) Tobacco smoking and alcohol consumption as risk factors for glioma: a case-control study in Melbourne, Australia. J Epidemiol Community Health 50:442–446

    PubMed  CAS  Google Scholar 

  49. Fuxe K, Andersson K, Eneroth P, Harfstrand A, Agnati LF (1989) Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroendocrinology 14:19–41

    Article  PubMed  CAS  Google Scholar 

  50. Andersson K (1985) Mecamylamine pretreatment counteracts cigarette smoke induced changes in hypothalamic catecholamine neuron systems and in anterior pituitary function. Acta Physiol Scand 125:445–452

    Article  PubMed  CAS  Google Scholar 

  51. Kapoor D, Jones TH (2005) Smoking and hormones in health and endocrine disorders. Eur J Endocrinol 152:491–499

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Ortiz-Plata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Plata, A., Tena Suck, M.L., López-Gómez, M. et al. Study of the telomerase hTERT fraction, PCNA and CD34 expression on pituitary adenomas. Association with clinical and demographic characteristics. J Neurooncol 84, 159–166 (2007). https://doi.org/10.1007/s11060-007-9365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9365-8

Keywords

Navigation