Skip to main content
Log in

Weed control and use of tree shelters: improving restoration success of degraded north Patagonian forests

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Austrocedrus chilensis and Nothofagus dombeyi are endemic species of the Andean-Patagonian forests of Argentina. Both species grow in either pure or mixed stands. In the last decades, several A. chilensis stands have been degraded by different disturbances that have compromised their natural regeneration. Plantation of seedlings of both species may be an alternative to help restore ecological, scenic and productive characteristics of these stands. In this study, we determined, in degraded A. chilensis stands grown in a xeric (≈ 690 mm.yr−1) and a mesic (≈ 984 mm.yr−1) site without canopy cover, the effects of tree shelters, the presence/absence of neighboring herbaceous vegetation, and the interaction between these factors on the performance (i.e. survival and growth) of planted N. dombeyi and A. chilensis seedlings, during four growing seasons. Results showed that tree shelters improved survival of N. dombeyi in the mesic site, and improved survival of both species in the xeric site. The removal of neighboring herbaceous vegetation improved the survival and diameter growth of both species at the xeric site, and improved the diameter growth of both species at the mesic site. By applying these planting technologies, both species could be successfully used for restoring highly degraded A. chilensis stands at mesic sites, while it is more advisable to use A. chilensis at xeric sites under open sky conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data and material are available.

References

  • Aide TM, Zimmerman JK, Pascarella JB, Rivera L, Marcano-Vega H (2000) Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restor Ecol 8:328–338. https://doi.org/10.1046/j.1526-100x.2000.80048.x

    Article  Google Scholar 

  • Albuinés MR (1998) Relevamiento y estudio del régimen climático de la provincia del Chubut. Informe del plan de trabajo No. 1020. Estación Experimental Agropecuaria Chubut. INTA, Trelew, Chubut, Argentina

  • Álvarez CP, Lara A (2008) Crecimiento de una plantación joven en fajas con especies nativas en la Cordillera de Los Andes de la provincia de Valdivia. Bosque 29:181–191. https://doi.org/10.4067/s0717-92002008000300001

    Article  Google Scholar 

  • Amoroso MM, Larson BC (2010) Stand development patterns as a consequence of the mortality in Austrocedrus chilensis forests. For Ecol Manag 259:1981–1992. https://doi.org/10.1016/j.foreco.2010.02.009

    Article  Google Scholar 

  • Amoroso MM, Suarez ML, Daniels LD (2012) Nothofagus dombeyi regeneration in declining Austrocedrus chilensis forests: Effects of overstory mortality and climatic events. Dendrochronologia 30:105–112. https://doi.org/10.1016/j.dendro.2010.12.005

    Article  Google Scholar 

  • Andersen CP, Sucoff EI, Dixon RK (1986) Effects of root zone temperature on root initiation and elongation in red pine seedlings. Can J for Res 16:696–700. https://doi.org/10.1139/x86-125

    Article  Google Scholar 

  • Auer V (1950) Las capas volcánicas como base de la cronología posglacial de Fuego Patagonia. Revista De Investigación Agraria (argentina) 2:49–208

    Google Scholar 

  • Bannister JR, Travieso G, Galindo N, Acevedo M, Puettmann K, Salas-Eljatib C (2019) Shrub influences on seedling performance when restoring the slow-growing conifer Pilgerodendron uviferum in southern bog forests. Restor Ecol 28(2):396–407. https://doi.org/10.1111/rec.13090

    Article  Google Scholar 

  • Bardon RE, Countryman DW, Hall RB (1999) Tree shelters reduced growth and survival of underplanted red oak seedlings in southern Iowa. North J Appl for 16(2):103–107. https://doi.org/10.1093/njaf/16.2.103

    Article  Google Scholar 

  • Baumgärtner J (2012) Reforestation techniques in the Mediterranean- woody plant propagation and establishment. Bachelor thesis to gain the Bachelor of Science degree (B.Sc.) in International Forest Ecosystem Management at the Eberswalde University for Sustainable Development University of Applied Sciences

  • Bellot J, Ortiz de Urbina JM, Sánchez JR (2002) The effects of treeshelters on the the growth of Quercus coccifera L. seedlings in a semiarid environment. Forestry 75:89–106. https://doi.org/10.1093/forestry/75.1.89

    Article  Google Scholar 

  • Benayas JMR, Navarro J, Espigares T, Nicolau JM, Zavala MA (2005) Effects of artificial shading and weed mowing in reforestation of Mediterranean abandoned cropland with contrasting Quercus species. For Ecol Manag 212:302–314. https://doi.org/10.1016/j.foreco.2005.03.032

    Article  Google Scholar 

  • Bendfeldt ES, Feldhake CM, Burger JA (2001) Establishing trees in an Appalachian silvopasture: response to shelters, grass control, mulch, and fertilization. Agrofor Syst 53(3):291–295. https://doi.org/10.1023/A:1013367224860

    Article  Google Scholar 

  • Bergez JE, Dupraz ZC (1997) Transpiration rate of Prunus avium L. seedlings inside an unventilated tree shelter. For Ecol Manag 97:255–264. https://doi.org/10.1016/S0378-1127(97)00071-6

    Article  Google Scholar 

  • Bergez JE, Dupraz ZC (2000) Effect of ventilation on growth of Prunus avium seedlings grown in tree shelters. Agric for Meteorol 104:199–214. https://doi.org/10.1016/S0168-1923(00)00163-5

    Article  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Tree 9:191–193. https://doi.org/10.1016/0169-5347(94)90088-4

    Article  CAS  Google Scholar 

  • Buduba CG (2006). Modificaciones en el pH y contenido de materia orgánica en suelos del ecotono estepa/bosque andino patagónico por implantación de pino ponderosa Tesis Doctoral, Universidad Nacional de Buenos Aires, Buenos Aires, Argentina

  • Buresti E, Sestini L (1994) Effetti delle protezioni individuali su giovani piante di farnia (Quercus robur L.). Annali Dell’instituto Sperimentale per La Selvicoltura 22:227–239

    Google Scholar 

  • Burger DW, Svihra P, Harris R (1992) Tree shelter use in producing container-grown trees. HortScience 27:30–32. https://doi.org/10.21273/HORTSCI.27.1.30

    Article  Google Scholar 

  • Burger DW, Forister GW, Kiehl PA (1996) Height, caliper growth, and biomass response of ten shade tree species to treeshelters. J Arboricult 22:161–166

    Google Scholar 

  • Burger DW, Forister GW, Gross R (1997) Short and long-term effects of treeshelters on the root and stem growth of ornamental trees. J Arboricult 23:49–56

    Google Scholar 

  • Caldwell J, Sucoff E, Dixon K (1995) Grass interference limits resource availability and reduces growth of juvenile red pine in the field. New for 10:1–15. https://doi.org/10.1007/BF00034173

    Article  Google Scholar 

  • Caselli M, Urretavizcaya MF, Loguercio GA, Defosse GE (2018) Light and moisture conditions suitable for establishing Andean cypress and coihue beech seedlings in Patagonia: a nursery approach. For Sci 65(1):27–39. https://doi.org/10.1093/forsci/fxy032

    Article  Google Scholar 

  • Caselli M, Urretavizcaya MF, Loguercio GA, Contardi L, Gianolini S, Defossé GE (2021) Effects of canopy cover and neighboring vegetation on the early development of planted Austrocedrus chilensis and Nothofagus dombeyi in north Patagonian degraded forests. For Ecol Manage 479:118543. https://doi.org/10.1016/j.foreco.2020.118543

    Article  Google Scholar 

  • Chaar H, Mechergui T, Khouaja A, Abid H (2008) Effects of treeshelters and polyethylene mulch sheets on survival and growth of cork oak (Quercus suber L.) seedlings planted in northwestern Tunisia. For Ecol Manag 256(4):722–731. https://doi.org/10.1016/j.foreco.2008.05.027

    Article  Google Scholar 

  • Chambers JC, Vander Wall SB, Schupp EW (1999) Seed and seedling ecology of Pinon and Juniper species in the pygmy woodlands of Western North America. Bot Rev 65:1–38. https://doi.org/10.1007/BF02856556

    Article  Google Scholar 

  • Clatterbuck WK (1999) Effects of tree shelters on growth of bottomland hardwood seedlings after seven growing seasons. In Proc. of the tenth biennial southern silvicultural conference, Shreveport, LA, pp 16–18

  • Coll L, Balandier P, Picon-Cochard C (2004) Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced belowground competition. Tree Physiol 24:45–54. https://doi.org/10.1093/treephys/24.1.45

    Article  Google Scholar 

  • Costello LR, Peters A, Giusti G (1996) An evaluation of tree shelter effects on plant survival and growth in a Mediterranean climate. J Arboric 22(1):1–9

    Google Scholar 

  • Dalle SP, de Blois S, Caballero J, Johns T (2006) Integrating analyses of local land-use regulations, cultural perceptions and land-use/land cover data for assessing the success of community- based conservation. For Ecol Manag 222(1–3):370–383. https://doi.org/10.1016/j.foreco.2005.10.052

    Article  Google Scholar 

  • Davies RJ (1985) The importance of weed control and the use of tree shelters for establishing broadleaved trees on grass-dominated sites in England. For Int J for Res 58(2):167–180. https://doi.org/10.1093/forestry/58.2.167

    Article  Google Scholar 

  • Davis A, Puettmann KJ, Perala D (1998) Site preparation treatments and browse protection affect establishment and growth of northern white-cedar. USDA For. Ser. North Central Forest Experiment Station Research Paper NC-330, p 9

  • Defossé GE, Robberecht R, Bertiller M (1997) Seedling dynamics of Festuca spp. in a grassland of Patagonia, Argentina, as affected by competition, microsites, and grazing. J Range Manag 50:73–79

    Article  Google Scholar 

  • Dezzotti A (1996) Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession, in northwestern Patagonia, Argentina. For Ecol Manag 89:125–137. https://doi.org/10.1016/S0378-1127(96)03860-1

    Article  Google Scholar 

  • Di Rienzo J, Macchiavelli E, Casanoves F (2011) Modelos lineales mixtos: aplicaciones en InfoStat. Primera edición, Grupo Infostat, Córdoba

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2019) InfoStat versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar. Accessed Aug 2020

  • Dinger EJ, Rose R (2009) Integration of soil moisture, xylem water potential, and fall–spring herbicide treatments to achieve the maximum growth response in newly planted Douglas-fir seedlings. Can J for Res 39:1401–1414. https://doi.org/10.1139/X09-050

    Article  CAS  Google Scholar 

  • Donoso PH, Soto DP, Coopman RE, Rodríguez-Bertos S (2013) Early performance of planted Nothofagus dombeyi and Nothofagus alpina in response to light availability and gap size in a high-graded forest in the south-central Andes of Chile. Bosque 34:23–32. https://doi.org/10.4067/S0717-92002013000100004

    Article  Google Scholar 

  • Donoso PJ, Soto DP, Fuentes C (2015) Differential growth rates through the seedling and sapling stages of two Nothofagus species underplanted at low-light environments in an Andean high-graded forest. New for 46(5–6):885–895. https://doi.org/10.1007/S11056-015-9480-X

    Article  Google Scholar 

  • Donoso ZC (1981) Ecología forestal. El bosque y su medio ambiente. Quinta edición. Impresos Universitaria, Santiago, Chile

  • Dorji T, Facelli JM, Norbu T, Delean S, Brookes JD (2020) Tree shelters facilitate brown oak seedling survival and establishment in a grazing dominant forest of Bhutan, Eastern Himalaya. Restor Ecol 28(5):1145–1157. https://doi.org/10.1111/rec.13176

    Article  Google Scholar 

  • Dubois MR, Chappelka AH, Robbins E, Somers G, Baker K (2000) Tree shelters and weed control: effects on protection, survival and growth of cherrybark oak seedlings planted on a cutover site. New for 20:105–118. https://doi.org/10.1023/A:1006704016209

    Article  Google Scholar 

  • Famiani F, Proietti P, Micheli M, Boco M, Standardi A, Ferranti F, Reale L (2007) Effects of tree shelters on young olive (Oleaeuropaea) tree growth and physiology. N Z J Crop Hortic Sci 35(3):303–312. https://doi.org/10.1080/01140670709510196

    Article  Google Scholar 

  • Frearson K, Weiss ND (1987) Improved growth rates within tree shelters. Q J for 81(3):184–187

    Google Scholar 

  • Garau A, Lemcoff J, Ghersa C, Beadle C (2008) Water stress tolerance of Eucalyptus globulus Labill subsp. maidenii (F. Muell) saplings induced by water restriction imposed by weeds. For Ecol Manag 255:2811–2819. https://doi.org/10.1016/j.foreco.2008.01.054

    Article  Google Scholar 

  • Garau AM, Ghersa CM, Lemcoff JH, Barañao JJ (2009) Weeds in Eucalyptus globulus subsp. maidenii (F. Muell) establishment: effects of competition on sapling growth and survivorship. New for 37(3):251–264. https://doi.org/10.1007/s11056-008-9121-8

    Article  Google Scholar 

  • Garau A, Lemcoff J (2001) Respuestas morfologicas y fisiologicas de plantines de dos origenes de Eucalyptus globulus spp. maidenii con distintos niveles de cobertura de malezas y riego. In: Proceedings of IUFRO international symposium developing the eucalypt of the future, Valdivia, Chile

  • Garau A, Guarnaschelli A, Carreras K, Lemcoff J (2000) Early architectural modifications induced by weeds in seedlings of two Eucalyptus globulus subsp. Maidenii provenances. In: Quentin I (ed) The tree. International symposium on the tree, Montreal, Canada, pp 53–58

  • George B, Brennan P (2002) Herbicides are more cost-effective than alternative weed control methods for increasing early growth of Eucalyptus dunnii and Eucalyptus saligna. New for 24:147–163. https://doi.org/10.1023/A:1021227913989

    Article  Google Scholar 

  • Gerhold HD (1999) Species differ in responses to tree shelters. J Arboricult 25:76–80

    Google Scholar 

  • Gillespie AR, Rathfon R, Myers RK (1996) Rehabilitating a young northern red oak planting with tree shelters. North J Appl for 13(1):24–29. https://doi.org/10.1093/njaf/13.1.24

    Article  Google Scholar 

  • Greslebin A, Hansen E, Sutton W (2007) Phytophthora austrocedrae sp. Nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina). Mycol Res 11(3):308–316

    Article  Google Scholar 

  • Greslebin A, Hansen E (2009) The decline of Austrocedrus forests in Patagonia (Mal del Cipres): another Phytophthora-caused forest disease. In: Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07. 02.09: Phytophthoras in forests and natural ecosystems. Gen. Tech. Rep. PSW-GTR-221. US Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, vol 221, pp 64–73

  • Gyenge JE, Fernández ME, Schlichter T (2007) Influence of radiation and drought on gas exchange of Austrocedrus chilensis seedlings. Bosque 28(3):220–225. https://doi.org/10.4067/S0717-92002007000300006

    Article  Google Scholar 

  • Haller M (2001) Descripción Geológica de la Hoja 4372- IV Trevelin, Chubut. Servicio Geológico Minero, Buenos Aires, N° 322

  • Harper G, Comeau P, Biring B (2005) A comparison of herbicide and mulch mat treatments for reducing grass, herb, and shrub competition in the BC Interior Douglas-Fir zone-Ten years results. West J Appl for 20(3):167–176. https://doi.org/10.1093/wjaf/20.3.167

    Article  Google Scholar 

  • Harrington GN (1991) Effects of soil moisture on shrub seedling survival in semi-arid grassland. Ecology 72(3):1138–1149. https://doi.org/10.2307/1940611

    Article  Google Scholar 

  • Heinemann K, Kitzberger T (2006) Effects of position, understorey vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of north-western Patagonia: a manipulative approach. J Biogeogr 33:1357–1367. https://doi.org/10.1111/j.1365-2699.2006.01511.x

    Article  Google Scholar 

  • Holmgren M, Scheffer M, Huston MH (1997) The interplay of facilitation and competition in plant communities. Ecology 78(7):1966–1975. https://doi.org/10.1890/0012-9658(1997)078[1966:TIOFAC]2.0.CO;2

    Article  Google Scholar 

  • International Tropical Timber Organization (ITTO) (2002) ITTO guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. ITTO Policy Development Series No 13, ITTO, Yokohama, Japan

  • Jacobs DF (2011) Reforestation of a salvage-logged high-elevation clearcut: Engelmann spruce seedling response to tree shelters after 11 growing seasons. West J Appl for 26(2):53–56. https://doi.org/10.1093/wjaf/26.2.53

    Article  Google Scholar 

  • Jacobs DF, Steinbeck K (2001) Tree shelters improve the survival and growth of planted Engelmann spruce seedlings in southwestern Colorado. West J Appl for 16(3):114–120. https://doi.org/10.1093/wjaf/16.3.114

    Article  Google Scholar 

  • Jacobs DF (2004) Restoration of a Rocky Mountain spruce-fir forest: sixth-year Engelmann spruce seedling response with or without tree shelter removal. In: Riley LE, Dumroese RK, Landis TD (tech. coords.) National proceedings: forest and conservation nursery association 2003. West. Forest and Conservation Nursery Assoc. US For. Serv. RMRS-P-33, pp 57–63

  • Jiménez-Castillo M, Lobos-Catalán P, Aguilera-Betti I, Rivera R (2011) Tasas diarias de transpiración y relaciones hídricas en especies arbóreas con distinto nivel de sombra tolerancia en un bosque templado chileno. Gayana Botánica 68:155–162. https://doi.org/10.4067/S0717-66432011000200005

    Article  Google Scholar 

  • Johansson T (2004) Changes in stem taper for birch plants growing in tree shelters. New for 27:13–24. https://doi.org/10.1023/a:1025021926765

    Article  Google Scholar 

  • Keeley JE (1992) Recruitment of seedlings and vegetative sprouts in unburned chaparral. Ecology 73:1194–1208. https://doi.org/10.2307/1940669

    Article  Google Scholar 

  • Kitzberger T, Steinaker DF, Veblen TT (2000) Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81:1914–1924. https://doi.org/10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2

    Article  Google Scholar 

  • Kjelgren R, Cleveland B, Foutch M (1994) Establishment of white oak seedlings with three post-plant handling methods on deep-tilled minesoil during reclamation. J Environ Hortic 12:100–103. https://doi.org/10.24266/0738-2898-12.2.100

    Article  Google Scholar 

  • Kolstrom M, Lindner M, Vilen T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982. https://doi.org/10.3390/f2040961

    Article  Google Scholar 

  • Köppen W, Geiger R (1936) Das geographische System der Klimate. Berlin Verlag von Gebrüder Borntl’aeger

  • La Manna L (2005) Caracterización de los suelos bajo bosque de Austrocedrus chilensis a través de un gradiente climático y topográfico en Chubut, Argentina. Bosque 26(2):137–153. https://doi.org/10.4067/S0717-92002005000200017

    Article  Google Scholar 

  • Lantagne DO, Ramm CW, Dickmann DI (1990) Tree shelters increase heights of planted oaks in a Michigan clearcut. North J Appl for 7(1):24–26. https://doi.org/10.1093/njaf/7.1.24

    Article  Google Scholar 

  • Lantagne DO (1995) Effects of tree shelters on planted red oaks after six growing seasons. In: Gottschalk KW, Fosbroke SLC (ed) Proceedings, 10th central hardwood forest conference, Morgantown, WV: Gen. Tech. Rep. NE-197. Radnor, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, vol 197, pp 515–521

  • Lee CA, Lauenroth WK (1994) Spatial distribution of grass and shrub root systems in the short grass steppe. Am Midl Nat 132:117–123

    Article  Google Scholar 

  • Letourneau FJ, Andenmatten E, Schlichter T (2004) Effect of climatic conditions and tree size on Austrocedrus chilensis–shrub interactions in northern Patagonia. For Ecol Manag 191:29–38. https://doi.org/10.1016/j.foreco.2003.11.002

    Article  Google Scholar 

  • Loguercio GA, Donoso PJ, Müller-Using S, Dezzotti A, Urretavizcaya MF, Navarro CO, Martin M, Schlegel B, Müller-Using B, Mujica R, González Peñalba M, Attis Beltrán H, Caselli M (2018a) Silviculture of temperate mixed forests from South America. In: Bravo-Oviedo A, Pretzch H, del Río M (eds) Dynamics, silviculture and management of mixed forests. Managing forest ecosystems, vol 31. Springer, Cham, pp 271–317

    Chapter  Google Scholar 

  • Loguercio GA, Urretavizcaya MF, Caselli M, Defossé GE (2018b) Propuestas silviculturales para el manejo de bosques de Austrocedrus chilensis sanos y afectados por el mal del ciprés de Argentina. In: Donoso P, Soto D y Promis A (Editores). Silvicultura en Bosques Nativos. OSU, Oregón USA, pp 111–128. ISBN: 978-0-692-09238-5

  • Loguercio GA (1997) Erhaltung der Baumart Austrocedrus chilensis (D. Don) et Boutelje durch nachhaltige Nutzung. Fac. de Cs. Ftales de la Universidad de Munich, p 212

  • Loguercio GA (2005) Posibilidades y limitaciones del manejo forestal de los bosques de ciprés de la cordillera. In: Conferencia en Ecociprés 2005: 1° Reunión sobre ecología, conservación y manejo de bosques de ciprés de la cordillera. Acta de trabajo completos”. Esquel, Chubut, pp 21–28. ISSN: 1669-258621

  • Maguire DA, Mainwaring DB, Rose R, Garber SM, Dinger EJ (2009) Response of coastal Douglas-fir and competing vegetation to repeated and delayed weed control treatments during early plantation development. Can J for Res 39:1208–1219. https://doi.org/10.1139/X09-032

    Article  Google Scholar 

  • Martínez-Garza C, Howe HF (2003) Restoring tropical diversity: beating the time tax on species loss. J Appl Ecol 40:423–429. https://doi.org/10.1046/j.1365-2664.2003.00819.x

    Article  Google Scholar 

  • McCreary DD, Tecklin J (2001) The effects of different sizes of tree shelters on blue oak (Quercus douglasii) Growth. West J Appl for 16(4):153–158. https://doi.org/10.1093/wjaf/16.4.153

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

  • Messina MG (1990) Herbicides increase growth responses to fertiliser in a 5-year-old Eucalyptus regnans plantation. NZJ For Sci 20:168–175

  • Montagnini F, Eibl B, Grance L, Maiocco D, Nozzi D (1997) Enrichment planting in overexploited subtropical forests of the Paranaense region of Misiones, Argentina. For Ecol Manag 99(1–2):237–246. https://doi.org/10.1016/S0378-1127(97)00209-0

    Article  Google Scholar 

  • Müller-Using B, Schlegel F (1980) The development of Chilean Nothofagus seedlings in a nursery shading experiment at the University of Valdivia. Allgemeine Forst-Und Jagdzeitung 151:79–96 (ISSN: 0002-5852)

    Google Scholar 

  • Navarro-Cerrillo RM, Fragueiro B, Ceaceros C, del Campo A, de Prado R (2005) Establishment of Quercus ilex L. subsp. ballota [Desf.] Samp. using different weed control strategies in southern Spain. Ecol Eng 25(4):332–342. https://doi.org/10.1016/j.ecoleng.2005.06.002

    Article  Google Scholar 

  • Nilsson U, Orlander G (1999) Vegetation management on grass-dominated clearcuts planted with Norway spruce in southern Sweden. Can J for Res 29:1015–1026. https://doi.org/10.1139/cjfr-29-7-1015

    Article  Google Scholar 

  • Oliet J, Jacobs DF (2007) Microclimatic conditions and plant morph-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric for Meteorol 144:58–72. https://doi.org/10.1016/j.agrformet.2007.01.012

    Article  Google Scholar 

  • Oliet J, Planelles R, Caballero FA, Jacobs DF (2005) Nursery fertilization and tree shelters affect long-term field response of Acacia salicina L. seedlings planted in Mediterranean semiarid conditions. For Ecol Manag 215:339–351. https://doi.org/10.1016/j.foreco.2005.05.024

    Article  Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202. https://doi.org/10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2

    Article  Google Scholar 

  • Pafundi L, Urretavizcaya MF, Defossé GE (2016) Micro-environmental changes induced by shape and size of forest openings: effects on Austrocedrus chilensis and Nothofagus dombeyi seedlings performance in a Pinus contorta plantation of Patagonia, Argentina. For Syst 25(3):10 (ISSN: 2171-5068)

    Google Scholar 

  • Paquette A, Bouchard A, Cogliastro A (2006) Successful under-planting of red oak and black cherry in early-successional deciduous shelterwoods of North America. Ann for Sci 63(8):823–831. https://doi.org/10.1051/forest:2006065

    Article  Google Scholar 

  • Paquette A, Hawryshyn J, Senikas AV, Potvin C (2009) Enrichment planting in secondary forests: a promising clean development mechanism to increase terrestrial carbon sinks. Ecol Soc 14(1):31

    Article  Google Scholar 

  • Passaretti RA, Pilon NAL, Durigan G (2020) Weed control, large seeds and deep roots: drivers of success in direct seeding for savanna restoration. Appl Veg Sci 23:406–416. https://doi.org/10.1111/AVSC.12495

    Article  Google Scholar 

  • Peterson JA, Groninger JW, Seiler JR, Will RE (1994) Tree shelter alteration of seedling microenvironment. In: Proceedings of the eighth biennial silvicultural conference, U.S. Forest Service Southern Research Station General Technical Report SRS-1, pp 305–310

  • Piñeiro J, Maestre FT, Bartolomé L, Valdecantos A (2013) Ecotechnology as a tool for restoring degraded drylands: a meta-analysis of field experiments. Ecol Eng 61:133–144. https://doi.org/10.1016/j.ecoleng.2013.09.066

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2004) Mixed-effects models in S and S-PLUS. Springer, New York. https://doi.org/10.1007/b98882

    Book  Google Scholar 

  • Ponder F (2003) Ten-year results of tree shelters on survival and growth of planted hardwoods. North J Appl for 20:104–108. https://doi.org/10.1093/njaf/20.3.104

    Article  Google Scholar 

  • Potter MJ (1988) Tree shelters improve survival and increases early growth rates. J for 86:39–41 (ISSN: 0022-1201)

    Google Scholar 

  • Potter MJ (1991) Tree shelters. Forestry Commission Handbook 7. HMSO Publications Centre, London, England, p 48

  • Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? For Ecol Manag 260:610–617. https://doi.org/10.1016/j.foreco.2010.05.017

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rabassa J, Martínez O, Getar E (2000) Geomorfología del segmento de Cordillera Patagónica y Patagonia Extrandina entre los 43 ° y 44 ° Lat. Sur, Prov. de Chubut. Comodoro Rivadavia: Universidad Nacional de la Patagonia S. J. Bosco, Secretaría de Ciencia y Técnica. Informe final PI N° 215, p 35

  • Read J, Hill RS (1985) Photosynthetic responses to light of Australian and Chilean species of Nothofagus and their relevance to the rainforest dynamics. New Phytol 101(4):731–742

    Article  Google Scholar 

  • Rovere AE (2000) Condiciones ambientales de la regeneración del ciprés de la cordillera (Austrocedrus chilensis). Bosque 21:57–64. https://doi.org/10.4206/bosque.2000.v21n1-06

    Article  Google Scholar 

  • Scherer-Lorenzen M, Korner C, Schulze ED (2010) Forest diversity and function. Ecological studies. Springer-Verlag, Berlin and Heidelberg GmbH & Co. K, p 424

    Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G (2014) Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis. Trees 28:1475–1487. https://doi.org/10.1007/s00468-014-1050-x

    Article  Google Scholar 

  • Sharew H, Hairston-Strang A (2005) A comparison of seedling growth and light transmission among tree shelters. North J Appl for 22(2):102–110. https://doi.org/10.1093/njaf/22.2.102

    Article  Google Scholar 

  • Smith HC (1983) Development of red oak seedlings using plastic shelters on hardwood sites in West Virginia. USDA Forest Service Research Paper NE 672

  • Soriano A, Sala OE (1984) Ecological strategies in a Patagonian arid steppe. Vegetatio 56(1):9–15

    Article  Google Scholar 

  • Soto DP, Donoso PJ, Uteau D, Zúñiga-Feest A (2009) Factores ambientales afectan el arreglo espacial de la sobrevida y daño en plantas transplantadas de Nothofagus dombeyi en los andes chilenos. Interciencia, vol 34, pp 100–105. Available at: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442009000200006&lng=es&nrm=iso. Aacceded 30 Marzo 2021

  • Stange EE, Shea KL (1998) Effects of deer browsing, fabric mats, and tree shelters on Quercus rubra seedlings. Restor Ecol 6:29–34. https://doi.org/10.1046/j.1526-100x.1998.00614.x

    Article  Google Scholar 

  • Suarez ML, Kitzberger T (2008) Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can J for Res 38:3002–3010. https://doi.org/10.1139/X08-149

    Article  Google Scholar 

  • Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest evolution along a precipitation gradient in northern Patagonia. J Ecol 98(5):1023–1034. https://doi.org/10.1111/j.1365-2745.2010.01698.x

    Article  Google Scholar 

  • Sweeney BW, Czapka SJ, Yerkes T (2002) Riparian forest restoration: increasing success by reducing plant competition and herbivory. Restor Ecol 10(2):392–440. https://doi.org/10.1046/j.1526-100X.2002.02036.x

    Article  Google Scholar 

  • Tuley G (1985) The growth of young oak trees in shelters. Forestry Int J for Res 58(2):181–195. https://doi.org/10.1093/forestry/58.2.181

    Article  Google Scholar 

  • Tuley G (1981) Tree shelters. PI2 in Forestry commission report in forest research, Edinboro, Scotland, UK

  • Urretavizcaya MF, Defosse GE (2013) Effects of nurse shrubs and tree shelters on the survival and growth of two Austrocedrus chilensis seedling types in a forest restoration trial in semiarid Patagonia, Argentina. Ann for Sci 70:21–30. https://doi.org/10.1007/s13595-012-0234-z

    Article  Google Scholar 

  • Urretavizcaya MF, Defossé GE (2019) Restoration of burned and post-fire logged Austrocedrus chilensis stands in Patagonia: effects of competition and environmental conditions on seedling survival and growth. Int J Wildland Fire 28:365–437. https://doi.org/10.1071/WF18154

    Article  Google Scholar 

  • Urretavizcaya MF, Defossé GE, Gonda HE (2012) Effect of sowing season, plant cover, and climatic variability on seedling emergence and survival in burned Austrocedrus chilensis forests. Restor Ecol 20:131–140. https://doi.org/10.1111/j.1526-100X.2010.00728.x

    Article  Google Scholar 

  • Urretavizcaya MF, Pastorino M, Mondino V, Contardi L (2015) La plantación con árboles nativos. In: Chauchard L, Frugoni MC, Nowak C (eds) Manual de Buenas Prácticas para el Manejo de plantaciones forestales en el noroeste de la Patagonia. Buenos Aires, pp 335–368

    Google Scholar 

  • Urretavizcaya MF, Gonda HE, Defossé GE (2017) Effects of post-fire plant cover in the performance of two cordilleran cypress (Austrocedrus chilensis) seedling stocktypes planted in burned forests of northeastern Patagonia, Argentina. Environ Manag 59(3):419–430. https://doi.org/10.1007/s00267-016-0793-0

    Article  Google Scholar 

  • Valenzuela P, Arellano EC, Burger JA, Becerra P (2016) Using facilitation microsites as a restoration tool for conversion of degraded grasslands to Nothofagus forests in Southern Patagonia. Ecol Eng 95:580–587. https://doi.org/10.1016/j.ecoleng.2016.06.116

    Article  Google Scholar 

  • Valenzuela P, Arellano EC, Burger J, Oliet JA, Perez MF (2018) Soil conditions and sheltering techniques improve active restoration of degraded Nothofagus pumilio forest in Southern Patagonia. For Ecol Manag 424:28–38. https://doi.org/10.1016/j.foreco.2018.04.042

    Article  Google Scholar 

  • Vallejo VR, Allen EB, Aronson J, Pausas JG, Cortina J, Gutierrez JR (2012) Restoration of Mediterranean-type woodlands and Shrublands. In: Andel JV, Aronson J (eds) Restoration ecology. The new Frontier. John Wiley & Sons, Hoboken, pp 130–144

    Chapter  Google Scholar 

  • Veblen TT (1989) Nothofagus regeneration in treefall gaps in northern Patagonia. Can J for Res 19:365–371. https://doi.org/10.1139/x89-055

    Article  Google Scholar 

  • Veblen TT, Lorenz DC (1987) Post fire stand development of Austrocedrus—Nothofagus forest in Patagonia. Vegetatio 73:113–126. https://doi.org/10.1007/BF00044825

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Burns BR, Rebertus A (1996) Perturbaciones y dinámica de regeneración en bosques andinos del sur de Chile y Argentina. Ecología de los Bosques Nativos de Chile 169–198

  • Veblen TT, Kitzberger T, Villalba R (2004) Nuevos paradigmas en ecología y su influencia sobre el conocimiento de la dinámica de los bosques del sur de Argentina y Chile. In: Arturi MF, Frangi JL, Goya JF (eds) Ecología y manejo de bosques de Argentina, pp 1–48. Editorial de la Universidad Nacional de La Plata, La Plata, Argentina. ISBN: 950-34-0307-3.

  • Villalba R, Veblen TT (1997) Spatial and temporal variation in Austrocedrus growth along the forest-steppe ecotone in northern Patagonia. Can J for Res 27:580–597. https://doi.org/10.1139/x96-209

    Article  Google Scholar 

  • Wagner R, Mohammed G, Noland T (1999) Critical period of interspecific competition for northern conifers associated with herbaceous vegetation. Can J for Res 29:890–897. https://doi.org/10.1139/cjfr-29-7-890

    Article  Google Scholar 

  • Ward JS, Gent Martin PN, Stephens GR (2000) Effects of planting stock quality and browse protection-type on height growth of northern red oak and eastern white pine. For Ecol Manag 127:205–216. https://doi.org/10.1016/S0378-1127(99)00132-2

    Article  Google Scholar 

  • Ward JS, Stephens GR (1995) Protection of tree shelters from deer browsing, pp 507–514. In: Landis TD, South DB (eds) 10th Central Hardwood Forest Conference. United States Department of Agriculture, Forest Service General Technical Report NE-197

  • Weinberger P, Ramirez C (2001) Microclima y regeneración natural de Raulí, Roble y Coigüe (Nothofagus alpina, N. obliqua y N. dombeyi). Bosque 22:11–26. https://doi.org/10.4206/bosque.2001.v22n1-02

    Article  Google Scholar 

  • Weitkamp WH, Tietje WD, Vreeland JK (2001) Brush piles and mesh cages protect blue oak seedlings from animals. Calif Agric. https://doi.org/10.3733/ca.v055n02p23

    Article  Google Scholar 

  • West DH, Chappelka AH, Tilt KM, Ponder HG, Williams JD (1999) Effect of tree shelters on survival, growth, and wood quality of 11 tree species commonly planted in the southern United States. J Arboric 25:69–74

    Google Scholar 

  • Whisenant SG (1999) Repairing damaged wildlands: a process-orientated, landscape-scale approach. Cambridge University Press

    Book  Google Scholar 

  • Zastrowd E, Marty TL (1991) Tree shelter experiences, pp 198–205. In: Proc.: The oak resource in the Upper Midwest. Winona, MN. Publ. No. NR-BU-5663-S, Minn. Ext. Serv., Univ. of Minn, St. Paul, MN, p 309

  • Zúñiga R, Alberdi M, Reyes-Dı´az M, Olivares O, Hess S, Bravo LA, Corcuera LJ (2006) Seasonal changes in the photosynthetic performance of two evergreen Nothofagus species in south central Chile. Rev Chil Hist Nat 79:489–504

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Ivor Roberts and Alejandro Garzonio for allowing us to carry out this study in their lands. We wish to acknowledge Cristian Huisca, Tania Figueroa, Cristian Muñoz, Mailen Concha and Franco Millaman for their help on planting, maintenance of treatments and measuring. We also wish to acknowledge Melisa Rago for her help on neighbouring vegetation characterization and for her English revision. This work was supported by a grant of Applied Research Project (PIA) 14067 from Forestry Sustainability and Competitiveness Program of the Unit for Rural Change (UCAR, Argentina), and by a grant from CONICET (PUE-CIEFAP 4116/16). This research was carried out within the frame of a Postgraduate fellowship from National Scientific and Technical Research Council (CONICET, Argentina) to M. Caselli. Finally, we would like to thank the anonymous reviewers and associate editor for their detailed suggestions, which greatly improved our manuscript.

Funding

The Forestry Sustainability and Competitiveness Program of the Unit for Rural Change (UCAR) (Applied Research Project Grant PIA-14067, Argentina) supported this study. The Patagonian Andes Forest Research and Extension Center (CIEFAP), and the National Scientific and Technical Research Council (CONICET) of Argentina (grant-PUE CIEFAP 4116/16) provided additional funds. This research was carried out within the frame of a Postgraduate fellowship from National Scientific and Technical Research Council grant to Marina Caselli (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Contributions

MC: conceptualization, methodology, data collection, formal analysis, investigation, writing original draft, writing review and editing, visualization, project administration. FU: conceptualization, methodology, investigation, resources, writing review and editing, supervision, project administration, funding acquisition. GÁL: conceptualization, methodology, investigation, resources, funding acquisition. LC: conceptualization, methodology. SG: data collection. Guillermo Emilio Defossé: conceptualization, resources, writing review and editing, funding acquisition.

Corresponding author

Correspondence to Marina Caselli.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caselli, M., Urretavizcaya, M.F., Loguercio, G.A. et al. Weed control and use of tree shelters: improving restoration success of degraded north Patagonian forests. New Forests 54, 179–200 (2023). https://doi.org/10.1007/s11056-022-09912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-022-09912-2

Keywords

Navigation