Skip to main content
Log in

Spike Activity and Genome Instability in Neurons of the Amygdaloid Complex in Rats of Selected Strains with Contrasting Nervous System Arousability in Normal Conditions and Stress

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Neuron activity in the amygdaloid complex was studied in baseline conditions and on exposure to electrical stimulation of the prefrontal cortex in intact rats and rats subjected to prolonged emotional/pain stress (PEPS) using rats of bred strains with high (HT) and low (LT) thresholds of nervous system arousability; levels of genome instability were also studied in amygdaloid complex cells using a protein marker for double-stranded DNA breaks, i.e., histone H2AX phosphorylated at serine 139 (γ-H2AX phospho Ser139). We report the first finding of a direct link between basal (baseline) spike activity in amygdaloid complex neurons and their genome instability level, along with a relationship between basolateral amygdala neuron responses to excitatory stimulation of the infralimbic cortex and the innate genetically determined level of nervous system arousability. PEPS enhanced the functional activity of the amygdaloid complex in HT rats in terms of the baseline neuron spike activity frequency, mean spike number, and latency in responses to cortical stimulation. LT rats in the same conditions showed more significant increases in baseline neuron activity frequency, accompanied by increases in immunoreactivity of cells to γ-H2AX phospho Ser139 and a significant reduction in the latency of the responses of amygdalar neurons to cortical stimulation with no change in the number of spikes in responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Airapetyants, M. G. and Vein, A. M., Neuroses in Research and the Clinic, Nauka, Moscow (1982).

    Google Scholar 

  • Aleksandrova, N. P., Shiryaeva, N. V., Kratin, Yu. G., and Lopatina, N. G., “Brain activation thresholds in rats selected for neuromuscular apparatus arousability,” Dokl. Akad. Nauk. SSSR, 259, 1233–1235 (1981).

    CAS  PubMed  Google Scholar 

  • Arruda-Carvalho, M. and Clem, R. L., “Prefrontal-amygdala fear networks come into focus,” Front. Syst. Neurosci., 9, 145 (2015).

    Article  Google Scholar 

  • Ayrapetov, M. K., Gursoy-Yuzugullu, O., Xu, C., et al., “DNA doublestrand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin,” Proc. Natl. Acad. Sci. USA, 111, No. 25, 9169–9174 (2014).

    Article  CAS  Google Scholar 

  • Bekhtereva, N. P., The Healthy and Sick Human Brain, AST, Moscow, Sova, St. Petersburg, VKT, Vladimir (2010).

  • Bloodgood, D. W., Sugam, J. A., Holmes, A., and Kash, T. L., “Fear extinction requires infralimbic cortex projections to the basolateral amygdala,” Transl. Psychiatry, 8, No. 1, Art. No. 60 (2018).

  • Cho, J. H., Deisseroth, K., and Bolshakov, V. Y., “Synaptic encoding of fear extinction in mPFC-amygdala circuits,” Neuron, 80, No. 6, 1491–1507 (2013).

    Article  CAS  Google Scholar 

  • Delli Pizzi, S., Chiacchiaretta, P., Mantini, D., et al., “Functional and neurochemical interactions within the amygdalamedial prefrontal cortex circuit and their relevance to emotional processing,” Brain Struct. Funct., 222, No. 3, 1267–1279 (2017).

    Article  Google Scholar 

  • Du, J., Johnson, L. M., Jacobsen, S. E., and Patel, D. J., “DNA methylation pathways and their crosstalk with histone methylation,” Nat. Rev. Mol. Cell. Biol., 16, No. 9, 519–532 (2015).

    Article  CAS  Google Scholar 

  • Dyuzhikova, N. A. and Daev, E. V., “The genome and stress reactions in animals and humans,” Ekol. Genetika, 16, No. 1, 4–26 (2018).

    Google Scholar 

  • Dyuzhikova, N. A., Skomorokhova, E. B., and Vaido, A. I., “Epigenetic mechanisms of formation of poststress states,” Usp. Fiziol. Nauk., 45, No. 1, 47–74 (2015).

    Google Scholar 

  • Flint, M. S., Baum, A., Chambers, W. H., and Jenkins, F. J., “Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones,” Psychoneuroendocrinology, 32, No. 5, 470–479 (2007).

    Article  CAS  Google Scholar 

  • Gong, F. and Miller, K. M., “Histone methylation and the DNA damage response,” Mutat. Res., 780, 37–47 (2019).

    Article  CAS  Google Scholar 

  • Hare, B. D., Thornton, T. M., Rincon, M., et al., “Two weeks of variable stress increases gamma-h2ax levels in the mouse bed nucleus of the stria terminalis,” Neuroscience, 373, 137–144 (2018).

    Article  CAS  Google Scholar 

  • Jalbrzikowski, M., Larsen, B., Hallquist, M. N., et al., “Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: associations with anxiety and depression,” Biol. Psychiatry, 82, No. 7, 511–521 (2017).

    Article  Google Scholar 

  • Kuo, L. J. and Yang, L. X., “Gamma-H2AX – a novel biomarker for DNA double-strand breaks,” In Vivo, 22, No. 3, 305–9 (2008).

    CAS  PubMed  Google Scholar 

  • Levina, A. S., Bondarenko, N. A., Shiryaeva, N. V., et al., “Inherited diving behavior in rats as an adaptive factor,” Ekol. Genetika (2020), in press.

  • Lopatina, N. G. and Ponomarenko, V. V., “Studies of the genetic basis of higher nervous activity,” in: The Physiology of Behavior. Neurobiology, Batuev, A. S. (ed.), Nauka, Leningrad (1987), pp. 9–59.

  • Lyubashina, O. A. and Nozdrachev, A. D., “NO-dependent mechanisms of amygdalocortical influences,” Dokl. Akad. Nauk., 421, No. 2, 282–285 (2008).

    Google Scholar 

  • Lyubashina, O. A., Panteleev, S. S., and Nozdrachev, A. D., Amygdalofugal Modulation of the Autonomic Centers of the Brain, Nauka, St. Petersburg (2009).

    Google Scholar 

  • Lyubashina, O. and Panteleev, S., “Effects of cervical vagus nerve stimulation on amygdala-evoked responses of the medial prefrontal cortex neurons in rat,” Neurosci. Res., 65, No. 1, 122–125 (2009).

    Article  Google Scholar 

  • Maroun, M., “Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala,” Eur. J. Neurosci., 24, No. 10, 2917–2922 (2006).

    Article  Google Scholar 

  • Mitra, R., Jadhav, S., McEwen, B. S., et al., “Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala,” Proc. Natl. Acad. Sci. USA, 102, No. 26, 9371–9376 (2005).

    Article  CAS  Google Scholar 

  • Ordyan, N. E., Vaido, A. I., Rakitskaya, V. V., et al., “Functioning of the hypophyseal-adrenocortical system in rats selected for electric current sensitivity thresholds,” Byull. Eksperim. Biol. Med., 125, No. 4, 443–445 (1998).

    Google Scholar 

  • Panteleev, S. S., Bagaev, V. A., and Nozdrachev, A. D., Cortical Modulation of Visceral Reflexes, St. Petersburg University Press, St. Petersburg (2004).

    Google Scholar 

  • Pavlova, M. B., “Epigenetic changes in the amygdala in rats with different nervous system arousability in response to emotional-pain stress,” Zdor. Osn. Chel. Potents. Probl. Puti Resh., 14, No. 2, 713–723 (2019).

    Google Scholar 

  • Paxinos, G., and Watson, C., The Rat Brain in Stereotaxic Coordinates, Academic Press, (2007), 6th ed.

  • Peters, J., Kalivas, P. W., and Quirk, G. J., “Extinction circuits for fear and addiction overlap in prefrontal cortex,” Learn. Mem., 16, No. 5, 279–288 (2009).

    Article  Google Scholar 

  • Phan, K. L., Fitzgerald, D. A., Nathan, P. J., and Tancer, M. E., “Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia,” Biol. Psychiatry, 59, No. 5, 424–9 (2006).

    Article  Google Scholar 

  • Quirk, G. J. and Mueller, D., “Neural mechanisms of extinction learning and retrieval,” Neuropsychopharmacology, 33, No. 1, 56–72 (2008).

    Article  Google Scholar 

  • Reznikov, R., Bambico, F. R., Diwan, M., et al., “Prefrontal cortex deep brain stimulation improves fear and anxiety-like behavior and reduces basolateral amygdala activity in a preclinical model of posttraumatic stress disorder,” Neuropsychopharmacology, 43, No. 5, 1099–1106 (2018).

    Article  Google Scholar 

  • Roozendaal, B., McEwen, B. S., and Chattarji, S., “Stress, memory and the amygdala,” Nat. Rev. Neurosci., 10, No. 6, 423–433 (2009).

    Article  CAS  Google Scholar 

  • Sierra-Mercado, D., Padilla-Coreano, N., and Quirk, G. J., “Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear,” Neuropsychopharmacology, 36, No. 2, 529–538 (2011).

    Article  Google Scholar 

  • Stein, M. B., Goldin, P. R., Sareen, J., et al., “Increased amygdala activation to angry and contemptuous faces in generalized social phobia,” Arch. Gen. Psychiatry, 59, No. 11, 1027–1034 (2002).

    Article  Google Scholar 

  • Suberbielle, E., Sanchez, P. E., Kravitz, A. V., et al., “Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β,” Nat. Neurosci., 16, No. 5, 613–621 (2013).

    Article  CAS  Google Scholar 

  • Vaido, A. I., Enin, L. D., and Shiryaeva, N. V., “Action potential conduction velocity in the tail and tibial nerves in rat strains selected for the excitability of the neuromuscular apparatus,” Genetika, XXI, No. 2, 262–264 (1985).

    Google Scholar 

  • Vaido, A. I., Shiryaeva, N. V., Khichenko, V. I., et al., “Development of long-term post-tetanic potentiation and changes in S-100 protein content in hippocampal sections from rats with different functional states of the nervous system,” Byull. Eksperim. Biol. Med., 113, No. 6, 645–648 (1992).

    CAS  Google Scholar 

  • Vaido, A. I., Shiryaeva, N. V., Pavlova, M. B., et al., “Selected rats grains with high and low arousability thresholds: a model for studies of maladaptive states depending on the nervous system arousability levels,” Lab. Zhivotn. Nauchn Issled., 3, 12–22 (2018).

    Google Scholar 

  • Vyas, A., Jadhav, S., and Chattarji, S., “Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala,” Neuroscience, 143, No. 2, 387–393 (2006).

    Article  CAS  Google Scholar 

  • Walker, D. L., Toufexis, D. J., and Davis, M., “Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety,” Eur. J. Pharmacol., 463, No. 1–3, 199–216 (2003).

    Article  CAS  Google Scholar 

  • Wang, J. and Lindahl, T., “Maintenance of genome stability,” Genomics Proteomics Bioinformatics, 14, No. 3, 119–121 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dyuzhikova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 5, pp. 655–667, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivachenko, I.B., Pavlova, M.B., Vaido, A.I. et al. Spike Activity and Genome Instability in Neurons of the Amygdaloid Complex in Rats of Selected Strains with Contrasting Nervous System Arousability in Normal Conditions and Stress. Neurosci Behav Physi 51, 620–628 (2021). https://doi.org/10.1007/s11055-021-01115-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01115-0

Keywords

Navigation