Skip to main content
Log in

Sensory Mechanisms in Early Orientation Discrimination in a Model of Visual Working Memory

Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

An experimental model of working memory was used to study the time characteristics and topography of evoked electrical brain activity in early discrimination between two sequential orientations. Studies in 33 subjects analyzed the amplitudes of components P100 and N150 of sensory event-related potentials (ERP) in the occipital, parietal, and temporal areas of the cortex on solution of a task consisting of comparing two sequentially presented visual stimuli. Stimuli in experimental sessions were square grids with lines in different orientations; stimuli in control sessions were spatial patterns consisting of three circles with different positions on the screen. The neurophysiological correlate of the detection of discordance between the current orientation and the orientation held in memory was an increase in the amplitude of the early wave complex P100/N150 in the occipital cortex, which was combined with a less clear increase in the P100 in the temporal-parietal area. Discordance of patterns was accompanied by an increase in the amplitude of the later ERP component N150 in the visual areas, without clear zonal specificity in this effect. Thus, these studies demonstrated the specific involvement of the early visual cortex in the processing information on comparison of the current sensory visual sign – line orientation – with that stored in memory. The discordance signal, formed in the occipital area, may underlie the early detection of changes in basic visual characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allison, T., Puce, A., Spencer, D. D., and McCarthy G., “Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli,” Cereb. Cortex, 9, No. 5, 415–430 (1999).

    Article  CAS  Google Scholar 

  • Angelucci, A., Levitt, J. B., Walton, E. J. S., et al., “Circuits for local and global signal integration in primary visual cortex,” J. Neurosci., 22, No. 19, 8633–8646 (2002).

    Article  CAS  Google Scholar 

  • Bar, M., Kassam, K. S., Ghuman, A. S., et al., “Top-down facilitation of visual recognition,” Proc. Natl. Acad. Sci. USA, 103, No. 2, 449–454 (2006).

    Article  CAS  Google Scholar 

  • Baumann, O., Endestad, T., Magnussen, S., and Greenlee, M. W., “Delayed discrimination of spatial frequency for gratings of different orientation: behavioral and fMRI evidence for low-level perceptual memory stores in early visual cortex,” Exp. Brain Res., 188, No. 3, 363–369 (2008).

    Article  Google Scholar 

  • Beteleva, T. G. and Sinitsyn, S. V., “Event-related potentials at different stages of realization of visual working memory,” Fiziol. Cheloveka, 34, No. 3, 5–15 (2008).

    CAS  PubMed  Google Scholar 

  • Bledowski, C., Prvulovic, C. D., Hoechstetter, K., et al., “Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study,” J. Neurosci., 24, 9353–9560 (2004).

    Article  CAS  Google Scholar 

  • Chelazzi, L., Miller, E. K., Duncan, J., and Desimone R., “Responses of neurons in macaque area V4 during memory-guided visual search,” Cereb. Cortex, 11, No. 8, 761–772 (2001).

    Article  CAS  Google Scholar 

  • Christophel, T. B., Cichy, R. M., Hebart, M. N., and Haynes, J. D., “Parietal and early visual cortices encode working memory content across mental transformations,” Neuroimage, 106, 198–206 (2015).

    Article  Google Scholar 

  • Christophel, T. B., Klink, P. C., Spitzer, B., et al., “The distributed nature of working memory,” Trends Cogn. Sci., 21, No. 2, 111–124 (2017).

    Article  Google Scholar 

  • Curtis, C. E. and D’Esposito M., “Persistent activity in the prefrontal cortex during working memory,” Trends Cogn. Sci., 7, No. 9, 415–423 (2003).

    Article  Google Scholar 

  • D’Esposito M., “From cognitive to neural models of working memory,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 362, No. 1481, 761–772 (2007).

    Article  Google Scholar 

  • D’Esposito, M. and Postle, B. R., “The cognitive neuroscience of working memory,” Annu. Rev. Psychol., 66, 115–142 (2015).

    Article  Google Scholar 

  • Emrich, S. M., Riggall, A. C., Larocque, J. J., and Postle, B. R., “Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory,” J. Neurosci., 33, No. 15, 6516–6523 (2013).

    Article  CAS  Google Scholar 

  • Ester, E. F., Anderson, D. E., Serences, J. T., and Awh E., “Neural measure of precision in visual working memory,” J. Cogn. Neurosci., 25, No. 5, 754–761 (2013).

    Article  Google Scholar 

  • Ester, E. F., Serences, J. T., and Awh E., “Spatially global representations in human primary visual cortex during working memory maintenance,” J. Neurosci., 29, No. 48, 15,258–15,265 (2009).

    Article  CAS  Google Scholar 

  • Ester, E. F., Sprague, T. C., and Serences, J. T., “Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory,” Neuron, 87, No. 4, 1–13 (2015).

    Article  Google Scholar 

  • Harrison, S. A. and Tong F., “Decoding reveals the contents of visual working memory in early visual areas,” Nature, 458, No. 7238, 632–635 (2009).

    Article  CAS  Google Scholar 

  • Hillyard, S. A., “Event-related potentials (ERPs) and cognitive processing,” Encyclopedia of Neuroscience (2009), pp. 13–18.

  • Hollingworth, A., Richard, A. M., and Luck, S. J., “Understanding the function of visual short-term memory in human cognition: transsaccadic memory, object correspondence, and gaze correction,” J. Exp. Psychol. Gen., 137, No. 1, 163–181 (2008).

    Article  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  • Koelewijn, L., Dumont, J. R., Muthukumaraswamy, S. D., et al., “Induced and evoked neural correlates of orientation selectivity in human visual cortex,” NeuroImage, 54, 2983–2993 (2011).

    Article  Google Scholar 

  • Kok, E. P., Visual Agnosia, Meditsina, Leningrad (1967).

    Google Scholar 

  • Krylova, M. A., Iz’yurov, I. V., Gerasimenko, N. Yu., et al., “Modeling of the sources of components of visual event-related potentials in humans in a line segment orientation identification task,” Zh. Vyssh. Nerv. Deyat., 65, No. 6, 685–698 (2015).

    CAS  Google Scholar 

  • Luck, S. J. and Vogel, E. K., “The capacity of visual working memory for features and conjunctions,” Nature, 390, No. 6657, 279–281 (1997).

    Article  CAS  Google Scholar 

  • Magnussen S., “Low-level memory processes in vision,” Trends Neurosci., 23, No. 6, 247–251 (2000).

    Article  CAS  Google Scholar 

  • Magnussen, S., “Implicit visual working memory,” Scand. J. Psychol., 50, No. 6, 535–542 (2009).

    Article  Google Scholar 

  • Mao, W. and Wang Y., “The active inhibition for the processing of visual irrelevant conflict information,” Int. J. Psychophysiol., 67, 47–53 (2008).

    Article  Google Scholar 

  • Mendoza-Halliday, D., Torres, S., and Martinez-Trujillo, J. C., “Sharp emergence of feature-selective sustained activity along the dorsal visual pathway,” Nat. Neurosci., 17, 1255–1262 (2014).

    Article  CAS  Google Scholar 

  • Mikhailova, E. S., Gerasimenko, N. Yu., Slavutskaya, A. V., et al., “The time and topographic characteristics of event-related potentials in a situation of conflict between two sequential visual stimuli in a visual memory task,” Fiziol. Cheloveka, 43, No. 3, 13–24 (2017).

    Google Scholar 

  • Miller, E. K., Li, L., and Desimone R., “Activity of neurons in anterior inferior temporal cortex during a short-term memory task,” J. Neurosci., 13, No. 4, 1460–1478 (1993).

    Article  CAS  Google Scholar 

  • Pasternak, T. and Greenlee, M. W., “Working memory in primate sensory systems,” Nat. Rev. Neurosci., 6, 97–107 (2005).

    Article  CAS  Google Scholar 

  • Raposo, D., Kaufman, M. T., and Churchland, A. K., “A category-free neural population supports evolving demands during decision-making,” Nat. Neurosci., 17, 1784–1792 (2014).

    Article  CAS  Google Scholar 

  • Riley, M. R. and Constantinidis C., “Role of prefrontal persistent activity in working memory,” Front. Syst. Neurosci., 9, 181 (2016).

    Article  Google Scholar 

  • Serences, J. T., Ester, E. F., Vogel, E. K., and Awh E., “Stimulus-specific delay activity in human primary visual cortex,” Psychol. Sci., 20, No. 2, 207–214 (2009).

    Article  Google Scholar 

  • Sprague, T. C., Ester, E. F., and Serences, J. T., “Reconstructions of information in visual spatial working memory degrade with memory load,” Curr. Biol., 24, 2174–2180 (2014).

    Article  CAS  Google Scholar 

  • Srimal, R. and Curtis, C. E., “Persistent neural activity during the maintenance of spatial position in working memory,” Neuroimage, 39, 455–468 (2008).

    Article  Google Scholar 

  • Stokes, M. G., Kusunoki, M., Sigala, N., et al., “Dynamic coding for cognitive control in prefrontal cortex,” Neuron, 78, 364–375 (2013).

    Article  CAS  Google Scholar 

  • Uchiyama, H., Iwashita, S., and Mitsui T., “N1 component of event-related potential evoked by simple composite figures in the lateral occipital cortex,” BioRxiv Preprint (2018), doi: https://doi.org/10.1101/345934.

  • Vogt, S. and Magnussen S., “Long-term memory for 400 pictures on a common theme,” Exp. Psychol., 54, No. 4, 298–303 (2007).

    Article  Google Scholar 

  • Yin, J., Gao, Z., Jin, X., et al., “Tracking the mismatch information in visual short term memory: An event-related potential study,” Neurosci. Lett., 491, No. 1, 26–30 (2011).

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, Y., Li, S., and Wang L., “Event-related potential N270, a negative component to identification of conflicting information following memory retrieval,” Clin. Neurophysiol., 114, No. 12, 2461–2468 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mikhailova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 69, No. 5, pp. 577–589, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, E.S., Gerasimenko, N.Y. & Slavutskaya, A.V. Sensory Mechanisms in Early Orientation Discrimination in a Model of Visual Working Memory. Neurosci Behav Physi 50, 700–709 (2020). https://doi.org/10.1007/s11055-020-00958-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00958-3

Keywords

Navigation