Skip to main content
Log in

The Role of Acetylation/Deacetylation of Histones and Transcription Factors in Regulating Metabolism in Skeletal Muscles

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Two types of enzymes control the reversibility of the acetylation of amino acid lysine residues in histone molecules in the posttranslational modifications of proteins – histone acetyltransferases (HAT) and histone deacetylases (HDAC). HAT enzymes catalyze the transfer of an acetyl group to the amino acid lysine in the N-terminal parts of histones H2A, H2B, H3, and H4. HDAC enzymes are members of the hydrolases family and play an important role in signal transmission by deacetylating histones, inducing changes in gene expression in skeletal muscle in different functional states in humans. Of the 18 histone deacetylases, class IIa includes four enzymes (HDAC 4, 5, 7, and 9), which are tissue-specific and are involved in regulating metabolism in skeletal and cardiac muscles. Class IIa enzymes react with specific transcription factors to form multicomponent protein complexes, nuclear-cytoplasmic transfer of which in muscle cells influences the expression of regulatory and metabolic genes. Studies in recent years have provided evidence of the important role of this group of histone deacetylases in controlling intracellular metabolism and point to the need for studies of the molecular mechanisms involved in gene expression in skeletal muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Astratenkova and V. A. Rogozkin, “Involvement of AMP-dependent protein kinase in the regulation of metabolism in skeletal muscle,” Ros. Fiziol. Zh., 99, No. 6, 657–673 (2013).

    CAS  Google Scholar 

  2. I. V. Astratenkova and V. A. Rogozkin, “Molecular mechanisms of skeletal muscle hypertrophy,” Ros. Fiziol. Zh., 100, No. 6, 649–669 (2014).

  3. I. V. Astratenkova and V. A. Rogozkin, “Signal pathways involved in regulating protein metabolism in skeletal muscle,” Ros. Fiziol. Zh., 102, No. 7, 753–772 (2016).

    CAS  Google Scholar 

  4. N. D. Gol’berg, A. M. Druzhevskaya, V. A. Rogozkin, and I. I. Akhmetov, “The role of mTOR in the regulation of metabolism in skeletal muscle,” Fiziol. Cheloveka, 40, No. 5, 123–132 (2014).

    PubMed  Google Scholar 

  5. A. M. Druzhevskaya, I. I. Akhmetov, and V. A. Rogozkin, “Involvement of Akt in the regulation of metabolism in skeletal muscle,” Ros. Fiziol. Zh., 99, No. 4, 518–527 (2013).

    CAS  Google Scholar 

  6. V. Bulusu, S. Tumanov, E. Michalopoulou, et al., “Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation,” Cell Rep., 18, No. 2, 647–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. M. Dancy and P. A. Cole, “Protein lysine acetylation by p300/CBP,” Chem. Rev., 115, No. 6, 24–52 (2015).

    Article  CAS  Google Scholar 

  8. S. Das, F. Morvan, B. Jourde, et al., “ATP citrate lyase improves mitochondrial function in skeletal muscle,” Cell Metab., 21, No. 6, 868–876 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. E. Di Giorgio and C. Brancolini, “Regulation of class IIa HDAC activities: it is not only matter of subcellular localization,” Epigenomics, 8, No. 2, 251–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. J. Fan, K. A. Krautkramer, J. L. Feldman, and J. M. Denu, “Metabolic regulation of histone post-translational modifications,” ASC Chem. Biol., 10, No. 1, 95–108 (2015).

    CAS  Google Scholar 

  11. L. Galluzzi, J. M. Bravo-San Pedro, I. Vitale, S. A. Aaronson, et al., “Essential versus accessory aspects of cell death: recommendations of the NCCD 2015,” Cell Death Differ., 22, No. 1, 58–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. V. Gaur, T. Connor, A. Sanigorski, et al., “Disruption of the Class IIa HDAC corepressor complex increases energy expenditure and lipid oxidation,” Cell Rep., 16, No. 11, 2802–2810 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. A. J. Guise, R. A. Mathias, E. A. Rowland, et al., “Probing phosphorylation-dependent protein interactions within functional domains of histone deacetylase 5 (HDAC5),” Proteomics, 14, No. 19, 2156–2166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K. F. Howlett and S. L. McGee, “Epigenetic regulation of skeletal muscle metabolism,” Clin. Sci. (Lond.), 130, No. 13, 1051–1063 (2016).

    Article  CAS  Google Scholar 

  15. G. M. Hudson, P. J. Watson, L. Fairall, et al., “Insights into the recruitment of class IIa Histone Deacetylases (HDACs) to the SMRT/NCoR transcriptional complex,” J. Biol. Chem., 290, No. 29, 18237–18244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. W. G. Kaelin and S. L. McKnight, “Influence of metabolism on epigenetics and disease,” Cell, 153, No. 1, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. V. Lee, S. A. Shah, and K. E. Wellen, “Obesity, cancer and acetyl-CoA metabolism,” Drug Discov. Today Dis. Mech., 10, No. 1–2, e55–e61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. N. Liu, B. R. Nelson, S. Bezprozvannaya, et al., “Requirement of MEF2A, C, D for skeletal muscle regeneration,” Proc. Natl. Acad. Sci. USA, 111, No. 11, 4109–4114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Madiraju, S. V. Pande, M. Prentki, and S. R. Madiraju, “Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation,” Epigenomics, 4, No. 6, 399–403 (2009).

    CAS  Google Scholar 

  20. G. Mansueto, A. Armani, C. Viscomi, et al., “Transcription factor EB controls metabolic flexibility during exercise,” Cell Metab., 25, No. 1, 182–196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Marmorstein and M. M. Zhou, “Writers and readers of histone acetylation: structure, mechanism, and inhibition,” Cold Spring Harb. Perspect. Biol., 6, No. 7, a018762 (2014).

  22. C. E. McCullough and R. Marmorstein, “Molecular basis for histone acetyltransferase regulation by binding partners, associated domains and autoacetylation,” ACS Chem., 11, No. 3, 632–642 (2016).

    Article  CAS  Google Scholar 

  23. S. L. McGee, E. Fairlie, A. P. Garnham, and M. Hargreaves, “Exercise-induced histone modifications inhuman skeletal muscle,” J. Physiol., 587, No. 17, 5951–5958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. L. McGee and M. Hargreaves, “Histone modifications and skeletal muscle metabolic gene expression,” Clin. Exp. Pharmacol. Physiol., 37, No. 3, 392–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. S. L. McGee, C. Swinton, S. Morrison, et al., “Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress,” FASEB J., 28, No. 8, 3384–3395 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. D. L. Medina, S. Di Paola, I. Peluso, et al., “Lysosomal calcium signaling regulates autophagy via calcineurin and TFEB,” Nat. Cell Biol., 17, No. 3, 288–299 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. I. Moretti, S. Ciciliot, K. A. Dyar, et al., “MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity,” Nat. Commun., 7, 12397 (2016), doi: 10.1038.2016.

  28. M. Parra, “Class IIa HDACs - new insights into their functions in physiology and pathology,” FEBS J., 282, No. 9, 1736–1744 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. F. Pietrola, L. Galluzzi, J. M. Bravo-San Pedro, et al., “Acetyl Coenzyme A: a central metabolic and second messenger,” Cell Metab., 21, No. 6, 805–821 (2015).

    Article  CAS  Google Scholar 

  30. J. R. Pon and M. A. Marra, “MEf2 transcription factors: developmental regulators and emerging cancer genes,” Oncotarget, 7, No. 3, 2297–2312 (2016).

    Article  PubMed  Google Scholar 

  31. M. J. Potthoff, H. Wu, M. A. Arnold, et al., “Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers,” J. Clin. Invest., 117, No. 9, 2459–2467 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Z. T. Schug, B. Peck, D. T. Jones, et al., “Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress,” Cancer Cell, 27, No. 1, 57–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Shi and P. T. Benjamin, “Acetyl-CoA and the regulation of metabolism: mechanisms and consequences,” Curr. Opin. Cell Biol., 33, No. 1, 125–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L. Shi and B. P. Tu, “Protein acetylation as a means to regulate protein function in tune with metabolic state,” Biochem. Soc. Trans., 42, No. 4, 1037–1042 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. K. K. Starheim, K. Gevaert, and T. Arnesen, “Protein N-terminal acetyltransferases: when the start matters,” Trends Biochem. Sci., 37, No. 4, 152–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. X. Su, K. E. Wellen, and J. D. Rabinowitz, “Metabolic control of methylation and acetylation,” Curr. Opin. Chem. Biol., 30, 52–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. G. Sutendra, A. Kinnaird, P. Dromparis, et al., “A nuclear pyruvate dehydrogenase complex is important for generation of acetyl-CoA and histone acetylation,” Cell, 158, No. 1, 84–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. F. Vahid, H. Zand, E. Nosrat-Mirshekarlou, et al., “The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review,” Gene, 562, No. 1, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. M. E. Walsh, and H. Van Remmen, “Emerging roles for histone deacetylases in age-related muscle atrophy,” Nutr. Healthy Aging, 4, No. 1, 17–30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Z. Wang, G. Qin, and T. C. Zhao, “Histone deacetylase 4 (HDAC4): mechanism regulations and biological function,” Epigenomics, 6, No. 1, 139–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. C. Yang, B. Ko, C. T. Hensley, et al., “Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport,” Mol. Cell., 56, No. 3, 414–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Zhao, A. Torres, R. A. Henry, et al., “ATP-citrate lyase controls a glucose-to-acetate metabolic switch,” Cell Rep., 17, No. 4, 1037–1052 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Astratenkova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 6, pp. 593–605, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astratenkova, I.V., Rogozkin, V.A. The Role of Acetylation/Deacetylation of Histones and Transcription Factors in Regulating Metabolism in Skeletal Muscles. Neurosci Behav Physi 49, 281–288 (2019). https://doi.org/10.1007/s11055-019-00730-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00730-2

Keywords

Navigation