Skip to main content
Log in

Phylo- and Ontogenetic Establishment of Dopamine Regulation of the Sleep–Waking Cycle in Vertebrates

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Results obtained from comparative immunohistochemical studies of dopamine-containing neurons and fibers in the telencephalic and diencephalic parts of the brain in cold-blooded animals (frogs) and warmblooded (14- and 30-day-old rat pups and adult) vertebrates are presented. The dynamics of quantitative changes in tyrosine hydroxylase and D1- and D2-immunoreactive structures during the sleep–waking cycle were studied using a sleep deprivation model. Morphofunctional correlations were seen in the nature of the responses of the dopaminergic neurotransmitter system to sleep deprivation during phylo- and ontogenesis. In addition, the effects of dopamine agonists and antagonists on the sleep–waking cycle were studied in frogs and young rats. Dopamine and its agonist apomorphine were found to promote increases in the state of immobility of the cataplexy type (this being a homolog of sleep) in frogs, while in rats it promoted increases in waking and catalepsy. The D1 receptor antagonist SCH 23390 induced increases in the quantity of waking and the state of immobility of the catatonia type in frogs, while the D2 receptor antagonist promoted increases only in the state of immobility of the catalepsy type in the sleep–waking cycle. In one-month-old rats, administration of the dopamine antagonist haloperidol initially induced increases in the proportion of the cataleptic stage, which was followed by onset of deep slow-wave sleep. We address the question of the formation of the regulatory role of the dopaminergic system in the sleep–waking cycle during phylo- and ontogenesis, when dopamine shows a transition from predominantly diencephalic neurosecretory influences to predominantly telencephalic neurotransmitter influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Aristakesyan, “Evolutionary aspects of the interaction of sleep and stress: a phyloontogenetic approach,” Zh. Evolyuts. Biokhim. Fiziol., 45, No. 6, 598–611 (1999).

    Google Scholar 

  2. E. A. Aristakesyan, “Comparative neurophysiological analysis of the sleep–waking cycle during early postnatal ontogenesis in rats and guinea pigs,” Zh. Evolyuts. Biokhim. Fiziol., 33,. No. 6, 622–629 (1997).

    Google Scholar 

  3. E. A. Aristakesyan, “Effects of apomorphine on the sleep–waking cycle in the grass frog Rana temporaria,” Zh. Evolyuts. Biokhim. Fiziol., 47, No. 2, 296–305 (2011).

    Google Scholar 

  4. N. N. Barykina, I. E. Chepkasov, T. A. Alekhina, and V. G. Kolpakov, “Breeding of Wistar rats for predisposition to catalepsy,” Genetika, 19, No. 11, 2014–2021 (1983).

    CAS  PubMed  Google Scholar 

  5. I. G. Karmanov, “New data on the characteristics of sleep and the organization of the sleep–waking cycle in cold-blooded animals,” Zh. Evolyuts. Biokhim. Fiziol., 32, No. 4, 5121–535 (1996).

    Google Scholar 

  6. G. A. Oganesyan, I. G. Karmanova, and E. S. Titkov, “Striohypothalamic functional connections in pharmacologically induced catalepsy,” Ros. Fiziol. Zh., 89, No. 1, 129–132 (1995).

    Google Scholar 

  7. G. A. Oganesyan, I. V. Romanova, and E. A. Aristakesyan, “Diencephalic-telencephalic changes in tyrosine hydroxylase activity in rats and grass frogs in sleep deprivation,” Zh. Evolyuts. Biokhim. Fiziol., 44, No. 3, 250–257 (2008).

    Google Scholar 

  8. G. A. Oganesyan, I. V. Romanova, E. A. Aristakesyan, et al., “The dopaminergic system of the telencephalo-diencephalic parts of the brain in vertebrates in the organization of the sleep–waking cycle,” Ros. Fiziol. Zh., 94, No. 9, 1071–1091 (2008).

    CAS  Google Scholar 

  9. G. A. Oganesyan, I. V. Romanova, M. V. Glazova, et al., “The mechanisms of the involvement of the excitatory neurotransmitter systems of the forebrain in regulating motor activity in vertebrates,” in: Current Problems in Integrative Activity and the Plasticity of the Nervous System [in Russian], K. V. Kazaryan (ed.), Gitutyun, Erevan (2009), pp. 231–234.

    Google Scholar 

  10. V. V. Raevskii, “Formation of the main transmitter systems of the brain,” in: Neuroontogenesis [in Russian], Nauka, Moscow (1985), pp. 199–243.

    Google Scholar 

  11. M. V. Ugolev, “Endocrine functions of the brain in adult mammals and during ontogenesis,” Ontogenez, 40, No. 1, 1–11 (2009).

    Google Scholar 

  12. P. D. Shabanov, A. A. Lebedev, and Sh. K. Meshcherov, Dopamine and the Reinforcing Systems of the Brain [in Russian], Lan’, St. Petersburg (2002).

    Google Scholar 

  13. M. I. Eliava and E. A. Aristakesyan, “Effects of six-hour sleep deprivation on the sleep–waking cycle in rats at different periods of ontogenesis,” Zh. Evolyuts. Biokhim. Fiziol., 34, No. 2, 202–211 (1998).

    CAS  Google Scholar 

  14. J. Arnt, K. P. Bogesa, J. Hyttel, and E. Meier, “Relative dopamine D1 and D2 receptor affinity and efficacy determine whether dopamine agonists induce hyperactivity or oral stereotypy in rats,” Pharmacol. Toxicol., 62, No. 1, 121–130 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. I. Arnuif, “Sleep and wakefulness disturbances in Parkinson’s disease,” J. Neural Transm. Suppl., 70, No. 70, 357–360 (2006).

    Article  Google Scholar 

  16. A. Björklund and O. Lindvall, Dopamine-Containing Systems in the CNS, A. Björklund and P. Hokfelt (eds.), Elsevier, Amsterdam (1984), Part 1, pp. 55–122.

    Google Scholar 

  17. A. D. Butler, “The evolution of the dorsal pallium in the telencephalon of amniotes: Cladistic analysis and a new hypothesis,” Brain Res. Rev., 19, No. 1, 66–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. J. Chu, W. Wilczynski, and R. E. Wilcox, “Pharmacological characterization of the D1- and D2-like dopamine receptors from the brain of the leopard frog, Rana pipiens,” Brain Behav. Evol., 57, No. 6, 328–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. M. Le Crom, M. Kapsimali, P.-O. Barfme, and P. Vernier, “Dopamine receptors for every species: Gene duplications and functional diversification in craniates,” J. Struct. Funct. Genoms., 3, No. 1, 161–176 (2003).

    Article  Google Scholar 

  20. K. L. Davis, R. S. Kahu, G. Ko, and M. Davidson, “Dopamine in schizophrenia: a review and reconceptualization,” Am. J. Psych., 148, No. 11, 1474–1486 (1991).

    CAS  Google Scholar 

  21. K. Dzirasa, S. Ribeiros, R. Costa, et al., “Dopaminergic control of sleep-wake states,” J. Neurosci., 20, No. 41, 10577–10589 (2006).

    Article  Google Scholar 

  22. J. F. Gagnon, M. A. Bedard, M. L. Fantini, et al., “REM sleep behavior disorder and REM sleep without atonia in Parkinson’s disease,” Neurology, 59, No. 4, 585–589 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. M. Glagow and J. Ewert, “Apomorphine alters prey-catching patterns in the common toad: behavioral experiments and (14)C-2-deoxyglucose brain mapping studies,” Brain Behav. Evol., 54, No. 4, 223–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. A. Gonzalez and W. J. A. J. Smeets, “Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivity in the brain of two amphibians, the anuran Rana ridibunda and urodele Pleurodeles waltii,” J. Comp. Neurol., 303, No. 3, 457–477 (1984).

    Article  Google Scholar 

  25. S. O. Isaak and C. W. Berridge, “Wake-promoting actions of dopamine D1 and D2 receptor stimulation,” J. Pharmacol. Exp. Ther., 307, No. 1, 386–394 (2003).

    Article  Google Scholar 

  26. M. Kapsimali, H. Dumond, S. Le Crom, et al., “Evolution and development of dopaminergic neurotransmitter systems in vertebrates,” J. Soc. Biol., 194, No. 2, 87–93 (2000).

    CAS  PubMed  Google Scholar 

  27. K. Kume, S. Kume, S. K. Park, et al., “Dopamine is a regulator of arousal in the fruit fly,” J. Neurosci., 25, No. 32, 7377–7384 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. M. Le Moal and H. Simon, “Mesocorticolimbic dopaminergic network: functional and regulatory roles,” Physiol. Rev., 71, No. 1, 155–234 (2001).

    Google Scholar 

  29. C. Missale, S. R. Nash, S. W. Robinson, et al., “Dopamine receptors: from structure to function,” Physiol. Rev., 78, No. 1, 189–225 (1998).

    CAS  PubMed  Google Scholar 

  30. J. Monti and D. Monti, “The involvement of dopamine in the modulation of sleep and waking,” Sleep Med. Res., 11, No. 2, 113–133 (2007).

    Article  Google Scholar 

  31. J. M. Monti, “Catecholamines and the sleep-wake cycle. II. REM sleep,” Life Sci., 32, No. 13, 1401–1415 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. S. K. Patni and P. C. Dandiya, “Apomorphine induced biting and fighting behaviour in reserpinized rats and an approach to the mechanism of action,” Life Sci., 14, No. 4, 737–774 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. D. B. Rye and A. H. Freeman, “Dopamine in behavioral state control,” in: Neurochemistry of Sleep and Wakefulness, J. M. Monti, S. R. Pandi-Perumal, and C. M. Sinton (eds.), Cambridge University Press, Cambridge, New York, Melbourne, (2008), pp. 179–223.

    Google Scholar 

  34. W. J. A. Smeet and A. Reiner, “Catecholamines in CNS of vertebrates: current concepts of evolution and functional significance,” in: Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates, W. J. A. Smeet and A. Reiner (eds.), Cambridge University Press, Cambridge (1994), pp. 463–481.

    Google Scholar 

  35. M. E. Trulson and D. W. Preussler, “Dopamine-containing ventral tegmental area neurons in freely moving cats: Activity across the sleep–waking cycle and response to stress,” Exp. Neurol., 83, No. 2, 367–377 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. D. Vallone, M. Pignatelli, G. Grammatikopoulos, et al., “Activity, non-selective attention and emotionality in dopamine D2/D3 receptor knock-out mice,” Behav. Brain Res., 130, No. 1–2, 141–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. J. D. Vinsent, P. Cardinaud, and P. Vernier, “Evolution of monoamine receptors and origin of motivation and emotional systems in vertebrates,” Bull. Acad. Natl. Med., 182, No. 7, 1505–1514 (1998).

    Google Scholar 

  38. K. Yamamoto and P. Vernier, “The evolution of dopamine systems in chordates,” Front. Neuroanat., 4, 21 (2011).

    Google Scholar 

  39. I. V. Zhdanova, “Sleep in zebrafish,” Zebrafish, 3, No. 2, 215–227 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Oganesyan.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 10, pp. 1213–1227, October, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oganesyan, G.A., Aristakesyan, E.A., Romanova, I.V. et al. Phylo- and Ontogenetic Establishment of Dopamine Regulation of the Sleep–Waking Cycle in Vertebrates. Neurosci Behav Physi 44, 584–592 (2014). https://doi.org/10.1007/s11055-014-9955-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9955-9

Keywords

Navigation