Skip to main content
Log in

Cellular mechanisms of behavioral plasticity in simple nervous systems

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Review of our own experimental studies of the cellular mechanisms of learning in the nervous systems of gastropod mollusks, along with published results, allows identification of a number of the principles of operation of nervous systems, which are important for descriptions of learning and memory processes: 1) the main plastic changes on learning occur at the level of interneurons; 2) learning results in selective alteration of the efficiency of particular synaptic inputs of command neurons; 3) reinforcement is not linked with neuron activity in the receptor-sensory neuron-interneuron-motoneuron-effector reflex arc, but is mediated by neurons which modulate this circuit, this involving a single neuron in some simple cases; 4) modulator neuron activity is required for the acquisition of plastic modifications to defensive behavior (including associative modifications) but is not necessary for the reproduction of acquired responses to a conditioned stimulus. At the same time, modulator neurons (comprising the reinforcement neuron system) are required for reproduction of contextual associative responses; and 5) changes resulting from learning occur at at least two independent loci in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Anokhin, Biology and Neurophysiology of the Conditioned Reflex [in Russian], Meditsina, Moscow (1968).

    Google Scholar 

  2. É. A. Asratyan, Characteristics of Higher Nervous Activity [in Russian], Academy of Sciences of the Armenian SSR Press, Erevan (1977).

    Google Scholar 

  3. P. M. Balaban, “Habituation and sensitization in command neurons during acquisition of a defensive reaction in the common snail,” Zh. Vyssh. Nerv. Deyat., 28, 356–363 (1978).

    CAS  Google Scholar 

  4. P. M. Balaban and I. S. Zakharov, Learning and Development: A Common Basis for Two Phenomena [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  5. E. G. Litvinov, O. A. Maksimova, P. M. Balaban, and B. P. Masinovskii, “A conditioned defensive reaction in the common snail,” Zh. Vyssh. Nerv. Deyat., 26, No. 1, 203–206 (1976).

    CAS  Google Scholar 

  6. O. A. Maksimova and P. M. Balaban, Neuronal Mechanisms of Behavioral Plasticity [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  7. I. P. Pavlov, Twenty Years of Experience in the Objective Study of Higher Nervous Activity in Animals [in Russian], State Press, Moscow, Petrograd (1923).

    Google Scholar 

  8. E. N. Sokolov, “The conceptual reflex arc”, in: Questions in Cybernetics: Neurocybernetic Analysis of the Mechanisms of Behavior [in Russian], L. A. Sokolov and L. A. Shmelev (eds.), “Cybernetics” Scientific Council of the Academy of Sciences of the USSR, Moscow (1985), pp. 5–28.

    Google Scholar 

  9. P. M. Balaban, “A system of command neurons in snail’s escape behavior,” Acta Neurobiol. Exp. (Warsaw), 39, 97–107 (1979).

    CAS  Google Scholar 

  10. P. M. Balaban, “Behavioral neurobiology of learning in terrestrial snails,” Progr. Neurobiol., 41, 1–19 (1993).

    Article  CAS  Google Scholar 

  11. P. M. Balaban, “Cellular mechanisms of behavioral plasticity in terrestrial snail,” Neurosci. Biobehav. Rev., 26, No. 5, 597–630 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. P. M. Balaban and N. Bravarenko, “Long-term sensitization and environmental conditioning in terrestrial snails,” Exptl. Brain Res., 96, 487–493 (1993).

    Article  CAS  Google Scholar 

  13. P. M. Balaban, N. I. Bravarenko, O. A. Maksimova, E. Nikitin, V. N. Ierusalimsky, and I. S. Zakharov, “A single serotonergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail,” Neurobiol. Learn. Mem., 75, 30–50 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. P. M. Balaban and R. Chase, “Selfstimulation in snails,” Neurosci. Res. Commun., 4, 139–146 (1989).

    Google Scholar 

  15. P. M. Balaban and O. A. Maksimova, “Positive and negative brain zones in the snail,” Eur. J. Neurosci., 5, 768–774 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. P. M. Balaban, T. A. Korshunova, and N. O. Bravarenko, “Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity,” Eur. J. Neurosci., 19, No. 2, 227–233 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. P. M. Balaban, A. Vehovsky, O. A. Maximova, and I. S. Zakharov, “Effect of 5,7-DHT on the food-aversive conditioning in the snail Helix lucorum L.,” Brain Res., 404, No. 2, 201–210 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. W. J. Davis and R. Jillette, “Neural correlates of behavioral plasticity in command neurons of Pleurobranchaea,” Science, 199, 801–804 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. D. A. Frank and M. E. Greenberg, “CREB: a mediator of long-term memory from molluscs to mammals,” Cell, 79, No. 1, 5–8 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. D. O. Hebb, The Organization of Behavior: A Neurophysiological Theory, J. Wiley and Sons, New York (1949).

    Google Scholar 

  21. C. L. Hull, Principles of Behavior, Appleton, New York (1943).

    Google Scholar 

  22. J. L. Mpitsos and D. S. Collins, “Learning: Rapid aversive conditioning in the gastropod mollusk Pleurobranchaea,” Science, 188, No. 4188, 954–957 (1975).

    Article  PubMed  CAS  Google Scholar 

  23. C. Sahley, J. W. Rudy, and A. Gelperin, “An analysis of associative learning in a terrestrial mollusc,” J. Comp. Physiol., 144, No. 1, 1–8 (1981).

    Article  Google Scholar 

  24. K. Si, S. Linquist, and E. R. Kandel, “A neuronal isoform of the Aplysia CPEB has prion-like properties,” Cell, 115, No. 7, 879–891 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. B. F. Skinner, The Behavior of Organisms; an Experimental Analysis, Appleton, New York (1938).

    Google Scholar 

  26. E. L. Thorndike, The Elements of Psychology, Seiler, New York (1905).

    Google Scholar 

  27. E. L. Walker, “Reinforcement — ‘The One Ring,’” in: Reinforcement and Behavior, J. T. Tapp (ed.), Academic Press, New York (1969), pp. 47–62.

    Google Scholar 

  28. E. T. Walters, t. J. Carew, and E. R. Kandel, “Classical conditioning in Aplysia californica,” Proc. Natl. Acad. Sci. USA, 76, 6675–6679 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. I. S. Zakharov, V. N. Ierusalimsky, and P. M. Balaban, “Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons in Helix,” Invertebr. Neurosci., 1, 41–51 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Balaban.

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 5, pp. 521–530, May, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaban, P.M. Cellular mechanisms of behavioral plasticity in simple nervous systems. Neurosci Behav Physi 38, 453–459 (2008). https://doi.org/10.1007/s11055-008-9002-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9002-9

Key words

Navigation