Skip to main content
Log in

Locomotor Responses and Neuron Excitability in Conditions of Haloperidol Blockade of Dopamine in Invertebrates and Vertebrates

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Levels of movement activity were used to identify two groups of rats: those with high- and low-activity levels. Blockade of dopamine receptors with haloperidol led to suppression of locomotor activity in both groups of rats; in common snails, haloperidol decreased the rate of locomotion. The excitability of spinal centers in rats decreased 5 min after single i.v. injections, with gradual recovery seen by 30 min. Chronic administration of haloperidol suppressed post-tetanic potentiation of the H response in the gastrocnemius muscle of spinal rats. Prolonged use of haloperidol induced significant hyperpolarization of the membrane potential of command neurons in common snails and increased the action potential generation threshold. Selective pharmacological exclusion of the brain dopamine system was found to lead to decreases in the excitability of defined neurons in snails and the spinal motor centers in rats, also producing impairments in locomotor responses in these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Andrianov, R. R. Tagirova, Kh. L. Gainutdinov, T. Kh. Gainutdinova, A. I. Golubev, and L. N. Muranova, “Effects of 6-hydroxydopamine on the electrical characteristics of snail neurons in conditions of long-term sensitization,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, No.9, 1067–1076 (2003).

    CAS  Google Scholar 

  2. E. B. Arushanyan, “The mesolimbic system of the brain and its involvement in the actions of psychotropic substances,” Farmakol. Toksikol., No. 5, 623–630 (1977).

    Google Scholar 

  3. E. B. Arushanyan, “Relationship between the antipsychotic effects of neuroleptics and their dopamine-like agents,” Farmakol. Toksikol., No. 5, 118–126 (1982).

    Google Scholar 

  4. E. B. Arushanyan, “Neuroleptic parkinsonism and late dyskinesia and methods for the pharmacological correction of these pathological states: a review,” Zh. Nevropatol. Psikhiat., No. 2, 269–277 (1985).

    Google Scholar 

  5. A. Yu. Budantsev, The Brain Monoaminergic System [in Russian], Moscow (1976).

  6. Kh. L. Gainutdinov, A. I. Golubev, and N. V. Zvezdochkina, Locomotor Activity in Pharmacological Lesions of the Brain Dopaminergic System [in Russian], Kazan' University Press, Kazan' (2003).

    Google Scholar 

  7. A. I. Gorbachevskaya, N. B. Saul'skaya, et al., “The interaction between the nucleus accumbens and the dorsal striatum,” Usp. Fiziol. Nauk., 26, No.2, 107–118 (1994).

    Google Scholar 

  8. N. I. Dubrovina and L. V. Loskutova, “Comparative analysis of the action of haloperidol on the persistence of a conditioned passive avoidance response in aggressive and submissive mice,” Zh. Vyssh. Nerv. Deyat., 53, No.2, 165–169 (2003).

    CAS  Google Scholar 

  9. B. Kostall and R. J. Neilor, “Experimental studies of the role of dopamine in motor disorders,” in: Neurotransmitter Systems [in Russian], Meditsina, Moscow (1982).

    Google Scholar 

  10. O. A. Maksimova and P. M. Balaban, Neural Mechanisms of Behavioral Plasticity [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  11. M. D. Mashkovskii, Therapeutic Substances. Notes for Doctors in Two Volumes [in Russian], Novaya Volna, Moscow (2002).

    Google Scholar 

  12. M. F. Mineva, “Mechanisms of action of neuroleptics,” in: Science and Technology [in Russian], All-Union Institute of Scientific and Technical Information (VINITI) (1987), Pharmacology. Chemotherapeutic Agents,Vol. 15, pp. 170–239.

    Google Scholar 

  13. N. V. Orlova, A. A. Folomkina, and A. S. Bazyan, “The behavior of rats in an open field test the day after injections of haloperidol: relationship to experimental conditions,” Zh. Vyssh. Nerv. Deyat., 53, No.2, 243–245 (2003).

    CAS  Google Scholar 

  14. V. A. Otellin and E. B. Arushanyan, The Nigrostriatal System [in Russian], Meditsina, Moscow (1999).

    Google Scholar 

  15. E. S. Raevskii, The Pharmacology of the Neuroleptics [in Russian], Meditsina, Moscow (1976).

    Google Scholar 

  16. K. S. Raevskii, “The neurochemical mechanisms of action of psychotropic substances,” in: Biochemical Pharmacology [in Russian], P. V. Sergeev (ed.), Vysshaya Shkola, Moscow (1982), pp. 263–284.

    Google Scholar 

  17. K. S. Raevskii, “Neurochemical strategy in studies of the mechanism of action of current antipsychotic agents,” Vestn. Ross. Akad. Med. Nauk., 7, 21–25 (1992).

    PubMed  Google Scholar 

  18. K. S. Raevskii, T. D. Sotkinova, and R. R. Gainetdinov, “Dopaminergic brain systems: receptor heterogeneity, functional role, pharmacological regulation,” Usp. Fiziol. Nauk., 27, No.4, 3–29 (1996).

    PubMed  CAS  Google Scholar 

  19. N. B. Saul'skaya, Control of the Synaptic Release of Dopamine in the Striatum by the Nucleus Accumbens. The Physiology of Transmitter Processes, [in Russian], Moscow (1990).

  20. T. P. Semenova and V. A. Ivanov, “Noradrenaline, dopamine, and serotonin levels in the brains of rats with different levels of movement activity,” Zh. Vyssh. Nerv. Deyat., 29, No.3, 640–642 (1979).

    CAS  Google Scholar 

  21. N. F. Suvorov, The Striate System and Behavior [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  22. A. S. Shtemberg, “Acute extinction of orientational-investigative reactions in rats of different strains in the open field test,” Zh. Vyssh. Nerv. Deyat., 32, No.4, 760–764 (1982).

    CAS  Google Scholar 

  23. A. S. Bazyan, V. M. Getsova, and N. V. Orlova, “Haloperidol catalepsy consolidation in the rat as a model of neuromodulatory integration,” Neurosci., 99, No.2, 279–288 (2000).

    Article  CAS  Google Scholar 

  24. A. Carlsson, Receptor-Mediated Control of Dopamine Metabolism. Pre-and Postsynaptic Receptors, Dekker, New York (1975), pp. 49–63.

    Google Scholar 

  25. A. Carlsson, Presynaptic Dopaminergic Autoreceptors as Targets for Drugs. Presynaptic Receptors and Neuronal Transports, Pergamon Press, New York (1991), pp. 43–48.

    Google Scholar 

  26. I. Creese, “Classical and atypical antipsychotic drugs,” Trends Neurosci., 17, 479–483 (1983).

    Google Scholar 

  27. S. E. Enna and J. T. Coyle, “Neuroleptics,” in: Neuroleptics: Neurochemical, Behavioural and Clinical Perspectives, Raven Press, New York (1983), pp. 1–15.

    Google Scholar 

  28. E. A. Kiyatkin, “Functional significance of mesolimbic dopamine,” Neurosci. Biobehav. Rev., 19, 573–598 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. M. Koch, A. Schmid, and H. U. Schnitzler, “Role of nucleus accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward,” Psychopharmacol. (Berlin), 152, No.1, 67–73 (2000).

    CAS  Google Scholar 

  30. P. J. Jassen and F. F. M. Van Brewer, “Structure-activity relationship of the butyrophenones and diphenylbutylpiperidines,” in: Neuroleptics and Schizophrenia, Raven Press, New York (1978), pp. 1–35.

    Google Scholar 

  31. R. N. Roth, “Neuroleptics: functional chemistry,” in: Neuroleptics: Neurochemical, Behavioural and Clinical Perspectives, Raven Press, New York (1993), pp. 119–157.

    Google Scholar 

  32. P. R. Sanderg, “Neuroleptic-induced emotional defecation: effects of pimozide and apomorphine,” Physiol. Behav. 46, No.2, 199–202 (1989).

    Google Scholar 

  33. A. N. Talalaenko, I. A. Abramets, Yu. Stakhovskii, et al., “The role of dopaminergic mechanisms on the brain in various models of anxious states,” Neurosci. Behav. Physiol. 24, No.3, 284–288 (1994).

    PubMed  CAS  Google Scholar 

  34. B. Weiss and V. G. Laties, “Behavioral pharmacology and toxicology,” Ann. Rev. Pharmacol., 9, 257–326 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 11, pp. 1381–1392, November, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvezdochkina, N.V., Muranova, L.N., Andrianov, V.V. et al. Locomotor Responses and Neuron Excitability in Conditions of Haloperidol Blockade of Dopamine in Invertebrates and Vertebrates. Neurosci Behav Physiol 36, 21–27 (2006). https://doi.org/10.1007/s11055-005-0158-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0158-2

Key Words

Navigation