Skip to main content
Log in

The Roles of Nitric Oxide and Carbon Dioxide Gas in the Neurotoxic Actions of Oxygen under Pressure

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The hypothesis that in conditions of hyperbaric oxygenation, nitric oxide (NO) modulates the vasodilatory effect of CO2 in the brain and thus accelerates the neurotoxic action of oxygen was verified experimentally. Conscious rats breathed atmospheric air or oxygen at 5 atm and blood flow in the striatum was measured before and after inhibition of carbonic anhydrase with acetazolamide, which causes retention of CO2 in the brain. Acetazolamide (35 mg/kg) increased blood flow in the animals when breathing air by 38 ± 7.4% (p < 0.01), while preliminary inhibition of NO synthase with Nω-nitro-L-arginine-methyl ester (L-NAME, 30 mg/kg) significantly weakened its vasodilatory action. Inhibition of carbonic anhydrase in animals breathing hyperbaric oxygen at 5 atm prevented cerebral vasoconstriction, increased brain blood flow, and accelerated the development of oxygen convulsions. The vasodilatory effect of acetazolamide in hyperbaric oxygenation was significantly reduced in animals pretreated with the NO synthase inhibitor, such that the latent period of convulsions increased. The results obtained here provide evidence that in conditions of extreme hyperoxia, NO modulates the cerebral hyperemia developing in conditions of CO2 retention in the brain and accelerates the development of the neurotoxic actions of hyperbaric oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. R. Gutsaeva, A. N. Moskvin, V. B. Kostkin, and I. T. Demchenko, “The role of nitric oxide in the postnatal resistance of rats to the neurotoxic effects of hyperbaric oxygen,” Zh. Evolyuts. Biokhim. Fiziol., 38, No.2, 189–190 (2002).

    Google Scholar 

  2. I. T. Demchenko, A. E. Boso, S. Yu. Zhilyaev, A. N. Moskvin, D. R. Gutsaeva, D. N. Atochin, P. B. Bennet, and K. A. Piantadosi, “The role of nitric oxide in cerebral vasoconstriction in rats breathing oxygen under pressure,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No.12, 1594–1603 (2000).

    Google Scholar 

  3. S. Yu. Zhilyaev, A. N. Moskvin, D. R. Gutsaeva, I. V. Churilina, and I. T. Demchenko, “Hyperbaric vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide anions,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No.5, 553–559 (2002).

    Google Scholar 

  4. A. G. Zhironkin, Oxygen. Physiological and Toxic Actions [in Russian], Nauka, Leningrad (1972).

    Google Scholar 

  5. G. L. Zal’tsman, B. N. Ponomarev, and A. I. Selivra, “The bioelectrical activity of various brain centers during the formation of oxygen epilepsy in dogs,” in: Hyperbaric Epilepsy and Anesthesia [in Russian], Nauka, Leningrad (1968).

    Google Scholar 

  6. A. N. Moskvin, S. Yu. Zhilyaev, O. I. Sharapov, T. F. Platonova, D. R. Gutsaeva, V. B. Kostkin, and I. T. Demchenko, “Brain blood flow modulates the neurotoxic action of hyperbaric oxygen via neuronal and endothelial nitric oxide,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No.7, 873–880 (2002).

    Google Scholar 

  7. A. I. Selivra, Hyperbaric Oxygenation [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  8. J. D. Balantine, Pathology of Oxygen Toxicity, Academic Press, New York (1982).

    Google Scholar 

  9. J. W. Bean, J. Lignell, and J. Coulson, “Regional cerebral blood flow, O2, and EEG in exposure to O2 at high pressure,” J. Appl. Physiol., 31, 235–324 (1971).

    PubMed  Google Scholar 

  10. I. T. Demchenko, A. E. Bosso, A. R. Whorton, and C. A. Piantadosi, “Nitric oxide production is enhanced in rat brain before oxygen-induced convulsions,” Brain Res., 917, 253–261 (2001).

    Article  PubMed  Google Scholar 

  11. D. L. Ehrenreich, R. A. Burns, R. W. Alman, and J. F. Fazekas, “Influence of acetazolamide on cerebral blood flow,” Arch. Neurol., 5, 227–231 (1961).

    PubMed  Google Scholar 

  12. F. Gotoh, J. S. Meyer, and M. Tomita, “Carbonic anhydrase inhibition and cerebral venous blood gases and ions in man,” Arch. Intern. Med., 117, 39–43 (1966).

    Article  PubMed  Google Scholar 

  13. F. M. Faraci and D. D. Heistad, “Regulation of the cerebral circulation: role of endothelium and potassium channels,” Physiol. Rev., 78, 53–97 (1998).

    PubMed  Google Scholar 

  14. D. Heuser, J. Astrup, N. A. Lassen, and B. Betz, “Brain carbonic acid acidosis after acetazolamide,” Acta Physiol. Scand., 93, 385–390 (1975).

    PubMed  Google Scholar 

  15. C. Iadecola and F. Zhang, “Nitric oxide dependent and independent components of cerebrovasodilation elicited by hypercapnia,” Amer. J. Physiol., 266, R546–R552 (1994).

    PubMed  Google Scholar 

  16. C. Iadecola, D. D. Pellegrino, M. A. Moskowitz, and N. Lassen, “Nitric oxide synthesis inhibition and cerebrovascular regulation,” J. Cereb. Blood Flow Metab., 14, 175–192 (1994).

    PubMed  Google Scholar 

  17. B. Kiss, S. Dallinger, O. Findi, G. Rainer, H. G. Eichler, and L. Schmetter, “Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide,” Amer. J. Physiol., 276, R1661–R1667 (1999).

    PubMed  Google Scholar 

  18. C. J. Lambertsen, R. E. Krough, D. Y. Cooper, et al., “Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism,” J. Appl. Physiol., 1953, No.5, 471–486 (1999).

    Google Scholar 

  19. U. Lindauer, J. Vogt, S. Schuh-Hofer, J. P. Dreier, and U. Dirnagl, “Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels,” J. Cereb. Blood Flow. Metab., 23, 1227–1238 (2003).

    Article  PubMed  Google Scholar 

  20. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide. Physiology, pathophysiology and pharmacology,” Pharmacol. Rev., 43, 109–142 (1991).

    PubMed  Google Scholar 

  21. L. J. Pellegrino, A. C. Pellegrino, and A. J. Cushman, A Stereotaxic Atlas of the Rat Brain, Plenum Press (1979).

  22. D. Torbati, D. Parolla, and S. Lavy, “Blood flow in rat brain during exposure to high oxygen pressure,” Aviat. Space Environ. Med., 49, 963–967 (1978).

    PubMed  Google Scholar 

  23. J. Tuttenberg, A. Heimann, and O. Kempski, “Nitric oxide modulates cerebral blood flow stimulation by acetazolamide in the rat cortex: a laser Doppler scanning study,” Neurosci. Lett., 315, 65–68 (2001).

    PubMed  Google Scholar 

  24. C. D. Wood, “Acetazolamide and CO2 in hyperbaric oxygen toxicity,” Undersea Biomed. Res., 9, No.1, 15–21 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 4, pp. 428–436, April, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutsaeva, D.R., Moskvin, A.N., Zhilyaev, S.Y. et al. The Roles of Nitric Oxide and Carbon Dioxide Gas in the Neurotoxic Actions of Oxygen under Pressure. Neurosci Behav Physiol 35, 751–756 (2005). https://doi.org/10.1007/s11055-005-0119-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0119-9

Key Words

Navigation