Skip to main content
Log in

The Role of the Flabellar and Ellipsoid Bodies of the Central Complex of the Brain of Drosophila Melanogaster in the Control of Courtship Behavior and Communicative Sound Production in Males

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The role of flabellar and ellipsoid bodies of the central complex of the brain of Drosophila melanogaster males in controlling courtship behavior and the accompanying sound production was studied by comparative analysis of the characteristics of courtship and singing in wild-type flies and individuals of five mutant lines with different anatomical defects in these parts of the brain. Investigations were performed using the following fly lines: Canton S (wild-type, controls), eboKS263, with defects only in the ellipsoid bodies, and ebo1041, ceb849, ceb892, and cbaKS96, with different levels of abnormality in both parts of the central complex. The data obtained here indicated that the flabellar and ellipsoid bodies are involved in: 1) maintaining a high level of courtship activity; 2) regulating the precision of male movements while following females; 3) in controlling the nature and stability of the sound elements from which communicative signals are constructed; 4) in regulating the rhythmic structure of signals dependent on the stability of pacemakers function; 5) establishing the relationship between behavior and the context in which it occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. V. Popov, E. V. Savvateeva-Popova, and N. G. Kamyshev, “Characteristics of acoustic communication in the fruit fly Drosophila melanogaster,” Sensor. Systemy, 14, 60–74 (2000).

    Google Scholar 

  2. A. V. Popov, N. A. Sitnik, E. V. Savvateeva-Popova, R. Wolf, and M. Heisenberg, “The role of the central parts of the brain in the control of sound production during courtship in Drosophila melanogaster,” Ros. Fiziol. Zh. im. I. M. Sechenova, 87, 779–794 (2001).

    Google Scholar 

  3. A. V. Popov, A. I. Peresleni, P. V. Ozerskii, E. E. Shchekanov, and E. V. Savvateeva-Popova, “The role of the nodules of the central complex of the brain of Drosophila melanogaster in controlling courtship behavior and sound production,” Sensor. Sistemy, 16, 297–308 (2002).

    Google Scholar 

  4. A. V. Popov, A. I. Peresleni, P. V. Ozerskii, E. E. Shchekanov, and E. V. Savvateeva-Popova, “The role of the protocerebral bridge of the central complex of the brain in Drosophila melanogaster in controlling courtship behavior and sound production by males,” Zh. Evolyuts. Biokhim. Fiziol., 39, 531–540 (2003).

    Google Scholar 

  5. V. L. Sviderskii, The Bases of Insect Neurophysiology [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  6. V. L. Sviderskii and S. I. Plotnikova, “Insects and vertebrates: analogous structures in the higher integrative centers of the brain,” Zh. Evolyuts. Biokhim. Fiziol., 38, 492–501 (2002).

    Google Scholar 

  7. H. C. Bennet-Clark, “A particle velocity microphone for the song of small insects and other acoustic measurements,” J. Exptl. Biol., 108, 459–463 (1984).

    Google Scholar 

  8. H. C. Bennet-Clark and A. W. Ewing, “Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster,” Anim. Behav., 17, 755–759 (1969).

    Google Scholar 

  9. P. J. Fonseca and A. V. Popov, “Sound radiation in a cicada: the role of different structures,” J. Comp. Physiol., A175, 349–361 (1994).

    Google Scholar 

  10. U. Hanesch, K.-F. Fischbach, and M. Heisenberg, “Neuronal architecture of the central complex in Drosophila melanogaster,” Cell Tiss. Res., 257, 343–366 (1989).

    Article  Google Scholar 

  11. B. Hedwig, “On the role in stridulation of plurisegmenetal neurons of the acridid grasshopper Omocestus viridulus L. 1. Anatomy and physiology of descending cephalothoracic interneurons,” J. Comp. Physiol., A158, 413–427 (1986).

    Article  Google Scholar 

  12. B. Hedwig and N. Elsner, “Sound production and sound detection in a stridulating acridid grasshopper (Omocestus viridulus),” in: Acoustic and Vibrational Communications in Insects, K. Kalmring and N. Elsner (eds.), Parey, Hamburg (1985), pp. 61–72.

  13. M. Heisenberg, “Central brain function in sects: genetic studies on the mushroom bodies and central complex in Drosophila,” Fortschritte der Zoologie, 39, 61–79 (1994).

    Google Scholar 

  14. U. Homberg, “Structure and functions of the central complex in insects,” in: Arthropod Brain, A. P. Gupta (ed.), Wiley, New York, Chichester, Brisbane, Toronto, Singapore (1987), pp. 347–367.

    Google Scholar 

  15. U. Homberg, “Neuroarchitecture of the central complex in the brain of the locusts Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry,” J. Comp. Neurol., 303, 245–254 (1991).

    Article  PubMed  Google Scholar 

  16. U. Homberg, H. Vitzthum, M. Muller, and U. Binkle, “Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria:identification of immunoreactive neurons and colocalization with neuropeptides,” J. Comp. Neurol., 409, 495–507 (1999).

    Article  PubMed  Google Scholar 

  17. Cricket Behavior and Neurobiology, F. Huber, T. E. Moore, and W. Loher (eds.), Cornell University Press, Ithaca, London (1989).

    Google Scholar 

  18. M. Ilius, R. Wolf, and M. Heisenberg, “The central complex of Drosophila melanogaster is involved in flight control. Studies on mutants and mosaics of the gene ellipsoid body open,” J. Neurogenet., 9, 189–206 (1994).

    PubMed  Google Scholar 

  19. J.-R. Martin, T. Raabe, and M. Heisenberg, “Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster,” J. Comp. Physiol., A185, 277–288 (1999).

    Article  Google Scholar 

  20. P. G. Mobbs, “Brain structure,” in: Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 5: Nervous System: Structure and Motor Function, Pergamon Press, Oxford (1985), pp. 299–370.

    Google Scholar 

  21. M. Muller, U. Homberg, and A. Kuhn, “Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria),” Cell Tiss. Res., 288, 159–176 (1997).

    Article  Google Scholar 

  22. S. C. Renn, J. D. Armstrong, M. Yang, X. An, K. Kaiser, and P. H. Taghert, “Genetic analysis of Drosophila ellipsoid body neuropile: organization and development of the central complex,” J. Neurobiol., 41, 189–207 (1999).

    Article  PubMed  Google Scholar 

  23. F. von Schilcher and J. C. Hall, “Neural topography of courtship song in sex mosaics of Drosophila melanogaster,” J. Comp. Physiol., A129, 85–95 (1979).

    Google Scholar 

  24. N. Strausfeld, Atlas of an Insect Brain, Springer, Berlin, Heidelberg (1976).

    Google Scholar 

  25. N. Strausfeld, “A brain region in insects that supervises walking,” Progr. Brain Res., 123, 273–284 (1999).

    Google Scholar 

  26. R. Strauss, U. Hanesch, M. Kinkelin, R. Wolf, and M. Heisenberg, “No-bridge of Drosophila melanogaster — portrait of a structural mutant of the central complex,” J. Neurogenet., 8, 125–155 (1992).

    PubMed  Google Scholar 

  27. R. Strauss and M. Heisenberg, “A higher control center of locomotor behavior in the Drosophila brain,” J. Neurosci., 13, 1852–1861 (1993).

    Google Scholar 

  28. H. Vitzthum, U. Homberg, and H. Agricola, “Distribution of Dip-Allostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex,” J. Comp. Neurol., 369, 419–437 (1996).

    Article  PubMed  Google Scholar 

  29. H. Vitzthum and U. Homberg, “Immunocytochemical demonstration of locust tachykinin-related peptides in the central complex of the locust brain,” J. Comp. Neurol., 390, 455–469 (1998).

    PubMed  Google Scholar 

  30. H. Vitzthum, M. Muller, and U. Homberg, “Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light,” J. Neurosci., 22, 1114–1125 (2002).

    PubMed  Google Scholar 

  31. J. L. D. Williams, “Anatomical studies of the insect central nervous system. A ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera),” J. Zool. (London), 176, 67–86 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 4, pp. 385–399, April, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.V., Peresleni, A.I., Ozerskii, P.V. et al. The Role of the Flabellar and Ellipsoid Bodies of the Central Complex of the Brain of Drosophila Melanogaster in the Control of Courtship Behavior and Communicative Sound Production in Males. Neurosci Behav Physiol 35, 741–750 (2005). https://doi.org/10.1007/s11055-005-0118-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0118-x

Key Words

Navigation