Skip to main content

Advertisement

Log in

Geometallurgical Domaining by Cluster Analysis: Iron Ore Deposit Case Study

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Geometallurgy integrates many aspects of geology, mineralogy, resource modeling, mine planning, metallurgy, and process control to optimize mining operations. Small-scale metallurgical samples that determine the natural variability of the processing response in the deposit are the building blocks of a geometallurgical model. In order to take representative samples for ore characterization and metallurgical testing, it is necessary to partition a deposit into homogeneous regions in terms of processing properties, called geometallurgical domains. Quantitative rock characteristics such as chemical assay, petrophysical properties, mineralogy, and texture are used to form similar groups with regard to processing properties. This study explores a body of multivariate data to detect classes with similar inherent multivariate characteristics. As a reliable and fast method, cluster analysis identifies geometallurgical classes within a multivariate framework in the deposit, which helps in choosing and characterizing samples and performing small-scale test. The eastern part of the Dardvey iron ore deposit was selected as the case study. Three model-free clustering approaches including hierarchical clustering, k-means clustering, and self-organizing maps (SOMs) were investigated. The results show that k-means and SOM performed similarly and outperformed hierarchical clustering. The resulting domains were confirmed by geological logging and were separated well both in attribute and geographical spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(modified after Pezeshkpor 2010)

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Abu-Jamous, B., Fa, R., & Nandi, A. K. (2015). Integrative cluster analysis in bioinformatics. Chichester: Wiley.

    Book  Google Scholar 

  • Ambroise, C., Dang, M., & Govaert, G. (1997). Clustering of spatial data by the EM algorithm. In A. Soares, J. Gómez-Hernandez, & R. Froidevaux (Eds.), geoENV I—Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol. 9 (pp. 493–504). Dordrecht: Springer.

  • Baumgartner, R., Dusci, M., Gressier, J., Trueman, A., Poos, S., Brittan, M., & Mayta, P. (2011). Building a geometallurgical model for early-stage project development—A case study from the canahuire epithermal Au–Cu–Ag deposit, Southern Peru. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 53–60).

  • Bourgault, G., Denis, M., & Pierre, L. (1992). The multivariate (co) variogram as a spatial weighting function in classification methods. Mathematical Geology, 24(5), 463–478.

    Article  Google Scholar 

  • Bye, A. (2011). Case studies demonstrating value from geometallurgy initiatives. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 53–60).

  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1–27.

    Article  Google Scholar 

  • Carrasco, P., Chiles, J.-P., & Séguret, S. A. (2008). Additivity, metallurgical recovery, and grade. The Eighth International Geostatistics Congress (pp. 465–476). Chile: Santiago.

    Google Scholar 

  • Cracknell, M., Reading, A. M., & De Caritat, P. (2015). Multiple influences on regolith characteristics from continental-scale geophysical and mineralogical remote sensing data using self-organizing maps. Remote Sensing of Environment, 165, 86–99.

    Article  Google Scholar 

  • Deutsch, C. V. (2013). Geostatistical modelling of geometallurgical variables—Problems and solutions. In The second AusIMM international geometallurgy conference, Brisbane, Australia (pp. 7–13).

  • Dominy, S. C., & O’Connor, L. (2016). Geometallurgy-beyond conception. In The third AusIMM international geometallurgy conference, Perth, Australia (pp. 3–10).

  • Dunham, S., & Vann, J. (2007). Does your block model tell you what you need to know? In Proceedings project evaluation, Melbourne, Australia (pp. 189–196).

  • Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Farrell, J., Miller, A., & Gaze, R. (2011). Geometallurgical sampling and resource estimation for magnetite deposits. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 311–319).

  • Fouedjio, F. (2016). A hierarchical clustering method for multivariate geostatistical data. Spatial Statistics, 18, 333–351.

    Article  Google Scholar 

  • Fraser, S. J., & Dickson, B. L. (2007). A new method for data integration and integrated data interpretation: self-organizing maps. In Proceedings of exploration, Toronto, Canada (pp. 907–910).

  • Gan, G., Ma, C., & Wu, J. (2007). Data clustering: Theory, algorithms, and applications. Philadelphia: Society for Industrial and Applied mathematics.

    Book  Google Scholar 

  • Ghavi, J., & Karimpour, M. H. (2010). Geological investigation and mineralization of the Dardway iron deposit, Sangan Ore Field, Northeast Iran. In The first international applied geological congress, Mashad, Iran (pp. 296–302).

  • Golmohammadi, A., Karimpour, M. H., Shafaroudi, A. M., & Mazaheri, S. A. (2015). Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran. Ore Geology Reviews, 65, 545–563.

    Article  Google Scholar 

  • Härdle, W., & Simar, L. (2012). Applied multivariate statistical analysis. Berlin: Springer.

    Book  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Haykin, S. (2009). Neural networks and learning machines (3rd ed.). New Jersey: Pearson.

    Google Scholar 

  • Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (2016). Handbook of cluster analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Hunt, J., Berry, R., Bradshaw, D., Triffett, B., & Walters, S. (2014). Development of recovery domains: Examples from the Prominent Hill IOCG deposit, Australia. Minerals Engineering, 64, 7–14.

    Article  Google Scholar 

  • Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. New jersey: Prentice Hall.

    Google Scholar 

  • Kaufman, L., & Rousseeuw, P. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.

    Book  Google Scholar 

  • Keeney, L. (2010). The development of a novel method for integrating geometallurgical mapping and orebody modelling. Ph.D. Thesis, University of Queensland.

  • Keeney, L., & Walters, S. G. (2009). Development of geometallurgical comminution mapping and modelling. In The 41st annual CMP conference, Ottawa, Canada (pp. 641–652).

  • Keeney, L., & Walters, S. G. (2011). A methodology for geometallurgical mapping and orebody modelling. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 217–225).

  • Knight, R., Olson Hoal, K., & Abraham, A. P. G. (2011). Three-dimensional geometallurgical data integration for predicting concentrate quality and tailings composition in a massive sulfide deposit. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 227–232).

  • Koch, I. (2013). Analysis of multivariate and high-dimensional data. New York: Cambridge University Press.

    Book  Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.

    Article  Google Scholar 

  • Lamberg, P. (2011). ParticlesThe bridge between geology and metallurgy. In Proceedings of conference in mineral engineering, Lulea, Sweden (pp. 16–31).

  • Lu, L. (2015). Iron ore: Mineralogy, processing and environmental sustainability. Cambridge: Elsevier.

    Google Scholar 

  • Lund, C., Lamberg, P., & Lindberg, T. (2014). Geometallurgy–A tool for better resource efficiency. European Geologist, 37, 39–43.

    Google Scholar 

  • Lund, C., Lamberg, P., & Lindberg, T. (2015). Development of a geometallurgical framework to quantify mineral textures for process prediction. Minerals Engineering, 82, 61–77.

    Article  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Berkeley, USA (pp. 281–297).

  • Manfrino, A. (2015). Unravelling the factors impacting on concentrate quality by geometallurgical data analysis at Fortescue Metals Group’s iron bridge magnetite mine. In Proceedings iron ore 2015, Perth, Australia (pp. 567–578).

  • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159–179.

    Article  Google Scholar 

  • Montoya, P., Keeney, L., Jahoda, R., Hunt, J., Berry, R., Drews, U., Chamberlain, V., & Leichliter, S. (2011). Geometallurgical modelling techniques applicable to prefeasibility projects—La Colosa case study. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 103–114).

  • Newton, M. J., & Graham, J. M. (2011). Spatial modelling and optimisation of geometallurgical indices. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 247–261).

  • Niiranen, K., & Böhm, A. (2012). A systematic characterization of the orebody for mineral processing at Kirunavaara iron ore mine operated by LKAB in Kiruna, Northern Sweden. In Proceedings of the XXVI international mineral processing congress, New Delhi, India (pp. 3855–3864).

  • Oliver, S., & Willingham, D. (2016). Maximum orebody value through the automation of resource model development using machin learning. In The third AusIMM international geometallurgy conference, Perth, Australia (pp. 295–301).

  • Pezeshkpor, M. (2010). Geology and mineralization of the Dardvey iron ore deposit. Technical Report, Madankav Engineering Co.

  • Rencher, A. C. (2003). Methods of multivariate analysis (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  • Romary, T., Ors, F., Rivoirard, J., & Deraisme, J. (2015). Unsupervised classification of multivariate geostatistical data: Two algorithms. Computers & Geosciences, 85, 96–103.

    Article  Google Scholar 

  • Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11(2), 33–40.

    Article  Google Scholar 

  • Steinley, D., & Brusco, M. J. (2008). A new variable weighting and selection procedure for K-means cluster analysis. Multivariate Behavioral Research, 43(1), 77–108.

    Article  Google Scholar 

  • Stoddard, A. M. (1979). Standardization of measures prior to cluster analysis. Biometrics, 35, 765–773.

    Article  Google Scholar 

  • Trosset, M. (2008). Representing clusters: K-means clustering, self-organizing maps, and multidimensional scaling. Technical Report 08-03, Department of Statistics, Indiana University, Bloomington.

  • Tungpalan, K., Manlapig, E., Andrusiewicz, M., Keeney, L., Wightman, E., & Edraki, M. (2015). An integrated approach of predicting metallurgical performance relating to variability in deposit characteristics. Minerals Engineering, 71, 49–54.

    Article  Google Scholar 

  • Vann, J., Jackson, J., Coward, S., & Dunham, S. (2011). The Geomet curve—A model for implementation of geometallurgy. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 35–43).

  • Vatandoost, A. (2010). Petrophysical characterization of comminution behavior. Ph.D. Thesis, University of Tasmania.

  • Vatandoost, A., Bevan, B. J., Campbell-Hardwick, S., & Young, J. (2013). A geometallurgical approach for iron ore product evaluation. In The second AusIMM international geometallurgy conference, Brisbane, Australia (pp. 259–266).

  • Vatandoost, A., Fullagar, P., & Roach, M. (2008). Automated multi-sensor petrophysical core logging. Exploration Geophysics, 39(3), 181–188.

    Article  Google Scholar 

  • Walters, S. G. (2011). Integrated industry relevant research initiatives to support geometallurgical mapping and modelling. In The first AusIMM international geometallurgy conference, Brisbane, Australia (pp. 273–278).

  • Walters, S., & Kojovic, T. (2006). Geometallurgical mapping and mine modelling (GEMIII)-the way of the future. In Proceedings of the SAG 2006 conference, Vancouver, Canada (pp. 411–425).

  • Williams, S. R., & Richardson, J. (2004). Geometallurgical Mapping: A new approach that reduces technical risk. In Proceedings of the 36th annual meeting of the Canadian mineral processors, Ontario, Canada (pp. 241–268).

Download references

Acknowledgments

This research is part of a Ph.D. project supported by Sangan Iron Ore Complex. The authors would like to thank all the staff of this mine for their assistance in visiting the drill cores, doing the sampling, and providing the data. The authors also thank two anonymous reviewers for their constructive comments and an anonymous agent who helped improve the English version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Asghari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabinasab, B., Asghari, O. Geometallurgical Domaining by Cluster Analysis: Iron Ore Deposit Case Study. Nat Resour Res 28, 665–684 (2019). https://doi.org/10.1007/s11053-018-9411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9411-6

Keywords

Navigation