Skip to main content
Log in

Influence of Gd3+ ion doping on structural, optical, and magnetic properties of (Mg–Ni–Co) nanoferrites

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The characterization of (Mg–Ni–Co) nanoferrites doped with small different concentrations of gadolinium rare earth metal (Gd3+), prepared by the chemical co-precipitation method, is reported in this study. The XRD results reveal that the crystallite sizes, which are close to the particle size detected from TEM analysis, decrease upon adding Gd3+. Furthermore, the lattice constant a increases from 8.351 to 8.367 Å as the Gd3+ concentration (x) increases from 0.00 to 0.08. HRTEM images reveal the presence of different grains with different lattice plane orientations. Furthermore, the appearance of concentric circles in the SAED patterns verified the samples’ polycrystalline nature. The presence of the active modes of the spinel structure was confirmed by the Raman analysis with a slight shift upon increasing the Gd3+ concentrations. Moreover, the photoluminescence (PL) analysis revealed the presence of a sharp peak in the UV region and structural defects in the prepared samples. Mössbauer spectroscopy and vibrating sample magnetometer (VSM) were used to examine the magnetic properties of the prepared samples. From the Mössbauer analysis, it was suggested that Gd3+ ions occupy the octahedral site. In addition, the saturation magnetization (Ms) and magnetocrystalline anisotropy (K) decreased from 31.87 to 15.76 emu/g and from 0.0057 to 0.0014 J/m3 with the increase of Gd3+ concentration from 0.00 to 0.08, respectively. Finally, different forms of the law of approach to saturation (LAS) for ferromagnetic materials were used for the fitting of M-H hysteresis loops at high applied fields. The obtained results show that the LAS model, mainly\(M={M}_{\textrm{s}}\left(1-\frac{b}{H^2}\right)+\upchi H\), can effectively describe the doping of Gd3+ for all concentrations. This model exhibits well-fitting with high R2 values and provides relevant values of the magnetic parameters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the reported results are available upon request.

References

  1. Gonçalves JM, de Faria LV, Nascimento AB, Germscheidt RL, Patra S, Hernández-Saravia LP, Bonacin JA, Munoz RA, Angnes L (2022) Sensing performances of spinel ferrites MFe2O4 (M= Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: a review. Anal Chim Acta 1233:340362. https://doi.org/10.1016/j.aca.2022.340362

    Article  CAS  Google Scholar 

  2. Qin H, He Y, Xu P, Huang D, Wang Z, Wang H, Wang Z, Zhao Y, Tian Q, Wang C (2021) Spinel ferrites (MFe2O4): synthesis, improvement and catalytic application in environment and energy field. Adv Colloid Interface Sci 294:102486. https://doi.org/10.1016/j.cis.2021.102486

    Article  CAS  Google Scholar 

  3. Maensiri S, Sangmanee M, Wiengmoon A (2009) Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res Lett 4:221–228. https://doi.org/10.1007/s11671-008-9229-y

    Article  CAS  Google Scholar 

  4. Gunjakar JL, More AM, Gurav KV, Lokhande CD (2008) Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Appl Surf Sci 254(18):5844–5848. https://doi.org/10.1016/j.apsusc.2008.03.065

    Article  CAS  Google Scholar 

  5. Barvinschi P, Stefanescu O, Dippong T, Sorescu S, Stefanescu M (2013) CoFe2O4/SiO2 nanocomposites by thermal decomposition of some complex combinations embedded in hybrid silica gels. J Therm Anal Calorim 112:447–453. https://doi.org/10.1007/s10973-012-2704-9

    Article  CAS  Google Scholar 

  6. Dippong T, Levei EA, Borodi G, Goga F, Barbu Tudoran L (2015) Influence of Co/Fe ratio on the oxide phases in nanoparticles of CoxFe3-xO4. J Therm Anal Calorim 119:1001–1009. https://doi.org/10.1007/s10973-014-4280-7

    Article  CAS  Google Scholar 

  7. Dippong T, Levei EA, Tanaselia C, Gabor M, Nasui M, Tudoran LB, Borodi G (2016) Magnetic properties evolution of the CoxFe3-xO4/SiO2 system due to advanced thermal treatment at 700° C and 1000° C. J Magn Magn Mater 410:47–54. https://doi.org/10.1016/j.jmmm.2016.03.020

    Article  CAS  Google Scholar 

  8. Mohamed R, Rashad MM, Haraz FA, Sigmund W (2010) Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method. J Magn Magn Mater 322(14):2058–2064. https://doi.org/10.1016/j.jmmm.2010.01.034

    Article  CAS  Google Scholar 

  9. Velhal NB, Patil ND, Shelke AR, Deshpande NG, Puri VR (2015) Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv 5(9):097166. https://doi.org/10.1063/1.4931908

    Article  CAS  Google Scholar 

  10. Shobana MK, Rajendran V, Jeyasubramanian K, Kumar NS (2007) Preparation and characterisation of NiCo ferrite nanoparticles. Mater Lett 61(13):2616–26199. https://doi.org/10.1016/j.matlet.2006.10.008

    Article  CAS  Google Scholar 

  11. Vinayak V, Khirade PP, Birajdar SD, Sable DB, Jadhav KM (2016) Structural, microstructural, and magnetic studies on magnesium (Mg2+)-substituted CoFe2O4 nanoparticles. J Supercond Nov Magn 29:1025–1032. https://doi.org/10.1007/s10948-015-3348-3

    Article  CAS  Google Scholar 

  12. Mohammad AM, Aliridha SM, Mubarak TH (2018) Structural and magnetic properties of mg-co ferrite nanoparticles. Dig. J. Nanomater. Biostructures 13(3):615–623

    Google Scholar 

  13. Anumol CN, Chithra M, Rout S, Sahoo SC (2020) Effect of Magnesium substitution on structural and magnetic properties of Nickel ferrite nanoparticles. J Supercond Nov Magn 33:1611–1617. https://doi.org/10.1007/s10948-019-05192-8

    Article  CAS  Google Scholar 

  14. Ashrafizadeh A, Ghasemi A, Paesano A Jr, Machado CF, Liu X, Morisako A (2010) Structural and magnetic properties of CuxMg0.5−xZn0.5Fe2O4 (x= 0–0.5) particles. J Alloys Compd 506(1):279–284. https://doi.org/10.1016/j.jallcom.2010.06.191

    Article  CAS  Google Scholar 

  15. Suo N, Sun A, Zhang Y, Yu L, Shao L, Zuo Z (2021) Magnetic transformation of Ni–Mg–Zn ferrite substituted by the Co2+ ions from soft magnetic to hard magnetic. J Mater Sci: Mater Electron 32:3286–3302. https://doi.org/10.1007/s10854-020-05077-w

    Article  CAS  Google Scholar 

  16. Suo N, Sun A, Yu L, Zuo Z, Zhao X, Zhang W, Zhang Y, Shao L, Yu T (2020) Preparation and study of lattice structure and magnetic properties of Bi3+ ion-doped Ni–Mg–Co ferrites by sol–gel auto-combustion method. J Sol-Gel Sci Technol 95:360–374. https://doi.org/10.1007/s10971-020-05302-2

    Article  CAS  Google Scholar 

  17. Tanbir K, Ghosh MP, Singh RK, Kar M, Mukherjee S (2020) Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J Mater Sci: Mater Electron 31:435–343. https://doi.org/10.1007/s10854-019-02546-9

    Article  CAS  Google Scholar 

  18. Ansari MM, Khan S, Ahmad N (2018) Effect of R3+ (R= Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. J Magn Magn Mater 465:81–87. https://doi.org/10.1016/j.jmmm.2018.05.071

    Article  CAS  Google Scholar 

  19. Sinha A, Dutta A (2020) Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: a study on effect of ionic radii of dopants. J Phys Chem Solids 145:109534. https://doi.org/10.1016/j.jpcs.2020.109534

    Article  CAS  Google Scholar 

  20. Ikram S, Ashraf F, Alzaid M, Mahmood K, Amin N, Haider SA (2021) Role of nature of rare earth ion dopants on structural, spectral, and magnetic properties in spinel ferrites. J Supercond Nov Magn 34:1745–1751. https://doi.org/10.1007/s10948-020-05723-8

    Article  CAS  Google Scholar 

  21. Li S, Pan J, Gao F, Zeng D, Qin F, He C, Dodbiba G, Wei Y, Fujita T (2021) Structure and magnetic properties of coprecipitated nickel-zinc ferrite-doped rare earth elements of Sc, Dy, and Gd. J Mater Sci: Mater Electron 32:13511–13526. https://doi.org/10.1007/s10854-021-05928-0

    Article  CAS  Google Scholar 

  22. Shao L, Sun A, Zhang Y, Yu L, Suo N, Zuo Z (2021) Comparative study on the structure and magnetic properties of Ni-Mg-Co ferrite doped with Al and rare earth elements. J Mater Sci: Mater Electron 32:5339–5352. https://doi.org/10.1007/s10854-020-05161-1

    Article  CAS  Google Scholar 

  23. Yu L, Sun A, Suo N, Zuo Z, Zhao X, Zhang W, Shao L, Zhang Y (2020) Enhancement of magnetic properties of Ni–Mg–Co ferrites by Y3+ ions doping. J Mater Sci: Mater Electron 31:14961–14976. https://doi.org/10.1007/s10854-020-04059-2

    Article  CAS  Google Scholar 

  24. Arshad J, Alzahrani FM, Munir S, Younis U, Al-Buriahi MS, Alrowaili ZA, Warsi MF (2023) Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid. Ceram Int 49(11):18988–19002. https://doi.org/10.1016/j.ceramint.2023.03.024

    Article  CAS  Google Scholar 

  25. Wangchhuk J, Meher SR (2022) Structural, electronic and magnetic properties of inverse spinel NiFe2O4: DFT + U investigation. Phys Lett A 443:128202. https://doi.org/10.1016/j.physleta.2022.128202

    Article  CAS  Google Scholar 

  26. Al Maashani MS, Khalaf KA, Gismelseed AM, Al-Omari IA (2020) The structural and magnetic properties of the nano-CoFe2O4 ferrite prepared by sol-gel auto-combustion technique. J Alloys Compd 817:152786. https://doi.org/10.1016/j.jallcom.2019.152786

    Article  CAS  Google Scholar 

  27. Dippong T, Levei EA, Cadar O (2017) Preparation of CoFe2O4/SiO2 nanocomposites at low temperatures using short chain diols. J Chem 2017:7943164. https://doi.org/10.1155/2017/7943164

    Article  CAS  Google Scholar 

  28. Dippong T, Levei EA, Cadar O, Goga F, Borodi G, Barbu-Tudoran L (2017) Thermal behavior of CoxFe3−xO4/SiO2 nanocomposites obtained by a modified sol–gel method. J Therm Anal Calorim 128:39–52. https://doi.org/10.1007/s10973-016-5930-8

    Article  CAS  Google Scholar 

  29. Jiang J, Li L, Xu F, Xie Y (2007) Preparation and magnetic properties of Zn–Cu–Cr–Sm ferrite via a rheological phase reaction method. Mater Sci Eng B 137(1-3):166–169. https://doi.org/10.1016/j.mseb.2006.11.014

    Article  CAS  Google Scholar 

  30. Hashim M, Shirsath SE, Kumar S, Kumar R, Roy AS, Shah J, Kotnala RK (2013) Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J Alloys Compd 549:348–357. https://doi.org/10.1016/j.jallcom.2012.08.039

    Article  CAS  Google Scholar 

  31. Poudel TP, Rai BK, Yoon S, Guragain D, Neupane D, Mishra SR (2019) The effect of gadolinium substitution in inverse spinel nickel ferrite: structural, magnetic, and Mössbauer study. J Alloys Compd 802:609–619. https://doi.org/10.1016/j.jallcom.2019.06.201

    Article  CAS  Google Scholar 

  32. Kadam A, Mande VK, Kadam S, Kadam R, Shirsath SE, Borade RB (2020) Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites. J Alloys Compd 840:155669. https://doi.org/10.1016/j.jallcom.2020.15566

    Article  CAS  Google Scholar 

  33. Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Kalina L, Urbánek P, Machovsky M, Skoda D, Masař M (2018) Influence of Gd3+-substitution on structural, magnetic, dielectric and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles. J Mat Sci: Mater Electron 29:15878–15893. https://doi.org/10.1007/s10854-018-9674-z

    Article  CAS  Google Scholar 

  34. Kanna RR, Sakthipandi K, Maraikkayar SS, Lenin N, Sivabharathy M (2018) Doping effect of rare-earth (lanthanum, neodymium and gadolinium) ions on structural, optical, dielectric and magnetic properties of copper nanoferrites. J Rare Earths. 36(12):1299–1309. https://doi.org/10.1016/j.jre.2018.03.033

    Article  CAS  Google Scholar 

  35. Hussain K, Bibi A, Jabeen F, Amin N, Mahmood K, Ali A, Iqbal MZ, Arshad MI (2020) Study of structural, optical, electrical and magnetic properties of Cu2+ doped Zn0.4Co0.6-xCe0.1Fe1.9O4 spinel ferrites. Phys B: Condens Matter 584:412078. https://doi.org/10.1016/j.physb.2020.412078

    Article  CAS  Google Scholar 

  36. Kumar P, Pathak S, Singh A, Jain K, Khanduri H, Wang L, Kim SK, Pant RP (2022) Observation of intrinsic fluorescence in cobalt ferrite magnetic nanoparticles by Mn2+ substitution and tuning the spin dynamics by cation distribution. J Mater Chem C 10(35):12652–12679. https://doi.org/10.1039/D2TC02605H

    Article  CAS  Google Scholar 

  37. Basma H, Al Boukhari J, Abd Al Nabi M, Aridi A, Sayed Hassan R, Naoufal D, Roumie M, Awad R (2022) Enhancement of the magnetic and optical properties of Ni0.5Zn0.5Fe2O4 nanoparticles by ruthenium doping. Appl Phys A 128(5):409. https://doi.org/10.1007/s00339-022-05552-7

    Article  CAS  Google Scholar 

  38. Fontaine F, Christidis GE, Yans J, Hollanders S, Hoffman A, Fagel N (2020) Characterization and origin of two Fe-rich bentonites from Westerwald (Germany). Appl Clay Sci 187:105444. https://doi.org/10.1016/j.clay.2020.105444

    Article  CAS  Google Scholar 

  39. Owolabi TO, Saleh TA, Olusayo O, Souiyah M, Oyeneyin OE (2021) Modeling the specific surface area of doped spinel ferrite nanomaterials using hybrid intelligent computational method. J Nanomater 2021:1–13. https://doi.org/10.1155/2021/9677423

    Article  CAS  Google Scholar 

  40. Kumar D, Kumar A, Prakash R, Singh AK (2019) X-ray diffraction analysis of Cu2+ doped Zn1-xCuxFe2O4 spinel nanoparticles using Williamson-Hall plot method. AIP Conf Proc 2142:070018. https://doi.org/10.1063/1.5122410

    Article  CAS  Google Scholar 

  41. Ghosh MP, Mandal S, Mukherjee S (2020) Correlations between microstructural and magnetic properties of Gd3+-doped spinel ferrite nanoparticles. Eur Phys J Plus 135(1):41. https://doi.org/10.1140/epjp/s13360-020-00112-5

    Article  CAS  Google Scholar 

  42. Liu R, Sun H, Liu X, Yan W, Jiang X (2022) Effect of Gd on microstructure, mechanical properties and damping properties of Fe-Cr-Al alloys. Mater Charact 187:111841. https://doi.org/10.1016/j.matchar.2022.111841

    Article  CAS  Google Scholar 

  43. Anwar H, Maqsood A (2013) Enhancement of electrical and magnetic properties of Cd2+ doped Mn–Zn soft nanoferrites prepared by the sol–gel autocombustion method. J Magn Magn Mater 333:46–52. https://doi.org/10.1016/j.jmmm.2012.12.027

    Article  CAS  Google Scholar 

  44. Bharati VA, Somvanshi SB, Humbe AV, Murumkar VD, Sondur VV, Jadhav KM (2020) Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J Alloys Compd 821:153501. https://doi.org/10.1016/j.jallcom.2019.153501

    Article  CAS  Google Scholar 

  45. Somvanshi SB, Khedkar MV, Kharat PB, Jadhav K (2020) Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram Int 46(7):8640–8650. https://doi.org/10.1016/j.ceramint.2019.12.097

    Article  CAS  Google Scholar 

  46. Islam M, Khan MKR, Kumar A, Rahman MM, Abdullah-Al-Mamun M, Rashid R, Haque MM, Sarker MSI (2022) Sol–gel route for the synthesis of CoFe2–xErxO4 nanocrystalline ferrites and the investigation of structural and magnetic properties for magnetic device applications. Acs Omega 7(24):20731–20740. https://doi.org/10.1021/acsomega.2c00982

    Article  CAS  Google Scholar 

  47. Sarker M, Yeasmin M, Al-Mamun MA, Hoque SM, Khan MK (2022) Influence of Gd content on the structural, Raman spectroscopic and magnetic properties of CoFe2O4 nanoparticles synthesized by sol-gel route. Ceram Int 48(22):33323–33331. https://doi.org/10.1016/j.ceramint.2022.07.27

    Article  CAS  Google Scholar 

  48. Yao H, Ning X, Zhao H, Hao A, Ismail M (2021) Effect of Gd-doping on structural, optical, and magnetic properties of NiFe2O4 as-prepared thin films via facile sol–gel approach. ACS Omega 6(9):6305–6311. https://doi.org/10.1021/acsomega.0c06097

    Article  CAS  Google Scholar 

  49. Parray IA, Somvanshi A, Naseem S, Hashim M, Khan W, Ali SA (2020) Microstructural and dielectric relaxation study of Gd3+ ion substituted MgFe2O4. AIP Conf Proc 2265:030114. https://doi.org/10.1063/5.0018111

    Article  CAS  Google Scholar 

  50. de Medeiros F, Madigou V, Lopes-Moriyama AL, de Souza CP, Leroux C (2020) Synthesis of CoFe2O4 nanocubes. Nano-Struct Nano-Objects 21:100422. https://doi.org/10.1016/j.nanoso.2019.100422

    Article  CAS  Google Scholar 

  51. Geetha K, Udhayakumar R, Manikandan A (2021) Enhanced magnetic and photocatalytic characteristics of cerium substituted spinel MgFe2O4 ferrite nanoparticles. Phys B: Condens Matter 615:413083. https://doi.org/10.1016/j.physb.2021.413083

    Article  CAS  Google Scholar 

  52. Hariharasuthan R, Chitradevi S, Radha KS, Chithambaram V (2022) Characterization of NiFe2O4 (nickel ferrite) nanoparticles with very low magnetic saturation synthesized via co-precipitation method. Appl Phys A 128:1045. https://doi.org/10.1007/s00339-022-06163-y

    Article  CAS  Google Scholar 

  53. Yousaf M, Nazir S, Akbar M, Akhtar MN, Noor A, Hu E, Shah MY, Lu Y (2022) Structural, magnetic, and electrical evaluations of rare earth Gd3+ doped in mixed Co–Mn spinel ferrite nanoparticles. Ceram Int 48(1):578–586. https://doi.org/10.1016/j.ceramint.2021.09.136

    Article  CAS  Google Scholar 

  54. Al Bitar M, Khalil M, Awad R (2022) Effect of La3+ and Ce3+ dopant ions on structural, optical, magnetic, and antibacterial activity of ZnO nanoparticles. Mater Today Commun 33:104683. https://doi.org/10.1016/j.mtcomm.2022.104683

    Article  CAS  Google Scholar 

  55. Bitar Z, Isber S, Noureddine S, Bakeer DE, Awad R (2017) Synthesis, characterization, optical properties, and electron paramagnetic resonance for nano Zn0.5Co0.5Fe2−xPrxO4. J Supercond Nov Magn 30:3603–3609. https://doi.org/10.1007/s10948-016-3873-8

    Article  CAS  Google Scholar 

  56. Aridi A, Awad R, Khalaf A (2021) Synthesis and characterization of ZnFe2O4/Mn2O3 nanocomposites. Appl Phys A 127:206. https://doi.org/10.1007/s00339-021-04362-7

    Article  CAS  Google Scholar 

  57. Ghosh MP, Mukherjee S (2019) Microstructural, magnetic, and hyperfine characterizations of Cu-doped cobalt ferrite nanoparticles. J Am Ceram Soc 102(12):7509–7520. https://doi.org/10.1111/jace.16687

    Article  CAS  Google Scholar 

  58. Gupta R, Sood AK, Metcalf P, Honig JM (2002) Raman study of stoichiometric and Zn-doped Fe3O4. Phys Rev B 65(10):104430. https://doi.org/10.1103/PhysRevB.65.104430

    Article  CAS  Google Scholar 

  59. Nekvapil F, Bunge A, Radu T, Cinta Pinzaru S, Turcu R (2020) Raman spectra tell us so much more: Raman features and saturation magnetization for efficient analysis of manganese zinc ferrite nanoparticles. J Raman Spectrosc 51(6):959–968. https://doi.org/10.1002/jrs.5852

    Article  CAS  Google Scholar 

  60. Aslam A, Morley NA, Amin N, Arshad MI, un Nabi MA, Ali A, Mahmood K, Bibi A, Iqbal F, Hussain S, Jamil Y (2021) Study of structural, optical and electrical properties of La3+ doped Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4 spinel ferrites. Phys B: Condens Matter 602:412565. https://doi.org/10.1016/j.physb.2020.412565

    Article  CAS  Google Scholar 

  61. Ansari SM, Ghosh KC, Devan RS, Sen D, Sastry PU, Kolekar YD, Ramana CV (2020) Eco-friendly synthesis, crystal chemistry, and magnetic properties of manganese-substituted CoFe2O4 nanoparticles. ACS Omega 5(31):19315–19330. https://doi.org/10.1021/acsomega.9b02492

    Article  CAS  Google Scholar 

  62. Zhang S, Wu J, Li F, Li L (2022) Enhanced photocatalytic performance of spinel ferrite (MFe2O4, M= Zn, Mn, Co, Fe, Ni) catalysts: the correlation between morphology–microstructure and photogenerated charge efficiency. J Environ Chem Eng 10(3):107702. https://doi.org/10.1016/j.jece.2022.107702

    Article  CAS  Google Scholar 

  63. Manohar A, Krishnamoorthi C, Naidu KCB, Pavithra C (2019) Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl Phys A 125:1–10. https://doi.org/10.1007/s00339-019-2760-0

    Article  CAS  Google Scholar 

  64. Kefeni KK, Msagati TA, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Engi B 215:37–55. https://doi.org/10.1016/j.mseb.2016.11.002

    Article  CAS  Google Scholar 

  65. Puli VS, Adireddy S, Ramana CV (2015) Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J Alloys Compd 644:470–475. https://doi.org/10.1016/j.jallcom.2015.05.031

    Article  CAS  Google Scholar 

  66. Nandan B, Bhatnagar MC, Kashyap SC (2019) Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations. J Phys Chem Solids 129:298–306. https://doi.org/10.1016/j.jpcs.2019.01.017

    Article  CAS  Google Scholar 

  67. Granone LI, Ulpe AC, Robben L, Klimke S, Jahns M, Renz F, Gesing TM, Bredow T, Dillert R, Bahnemann DW (2018) Effect of the degree of inversion on optical properties of spinel ZnFe2O4. Phys Chem Chem Phys 20(44):28267–28278. https://doi.org/10.1039/C8CP05061A

    Article  CAS  Google Scholar 

  68. Yan Z, Gao J, Li Y, Zhang M, Guo M (2015) Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RCS Adv 5(112):92778–92787. https://doi.org/10.1039/C5RA17145H

    Article  CAS  Google Scholar 

  69. Massoudi J, Smari M, Nouri K, Dhahri E, Khirouni K, Bertaina S, Bessais L (2020) Magnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscale. RSC Adv 10(57):34556–34580. https://doi.org/10.1039/D0RA05522K

    Article  CAS  Google Scholar 

  70. Ghorbani H, Eshraghi M, Dodaran AS, Kameli P, Protasowicki S, Vashaee D (2022) Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles. Mat Res Bull 147:111642. https://doi.org/10.1016/j.materresbull.2021.111642

    Article  CAS  Google Scholar 

  71. Dar MI, Shivashankar SA (2014) Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv 4(8):4105–4113. https://doi.org/10.1039/C3RA45457F

    Article  CAS  Google Scholar 

  72. Chamritski I, Burns G (2005) Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B 109(11):4965–4968. https://doi.org/10.1021/jp048748h

    Article  CAS  Google Scholar 

  73. Qureshi AA, Javed S, Javed HMA, Jamshaid M, Ali U, Akram MA (2022) Systematic investigation of structural, morphological, thermal, optoelectronic, and magnetic properties of high-purity hematite/magnetite nanoparticles for optoelectronics. Nanomaterials 12(10):1635. https://doi.org/10.3390/nano12101635

    Article  CAS  Google Scholar 

  74. Raj AM, Chirayil GT (2017) Tunable direct band gap photoluminescent organic semiconducting nanoparticles from lignite. Sci Rep 7(1):18012. https://doi.org/10.1038/s41598-017-18338-2

    Article  CAS  Google Scholar 

  75. Arif M, Sanger A, Shkir M, Singh A, Katiyar RS (2019) Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles. Phys B: Condens Matter 552:88–95. https://doi.org/10.1016/j.physb.2018.09.023

    Article  CAS  Google Scholar 

  76. Harzali H, Marzouki A, Saida F, Megriche A, Mgaidi A (2018) Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4 (R= Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation. J Magn Magn Mater 460:89–94. https://doi.org/10.1016/j.jmmm.2018.03.062

    Article  CAS  Google Scholar 

  77. Devi EC, Singh SD (2023) Magnetic and photoluminescence properties of rare-earth substituted quaternary spinel ferrite nanoparticles. Ceram Int 49(5):8409–8416. https://doi.org/10.1016/j.ceramint.2022.11.003

    Article  CAS  Google Scholar 

  78. Lin Q, Yang F, Zhang Q, Su K, Xu H, He Y, Lin J (2023) Mössbauer and structure-magnetic properties analysis of AyB1−yCxFe2−xO4 (C= Ho, Gd, Al) ferrite nanoparticles optimized by doping. Molecules 28(10):4226. https://doi.org/10.3390/molecules28104226

    Article  CAS  Google Scholar 

  79. Yassine R, Abdallah A, Hassan RS, Yaacoub N, Awad R, Bitar Z (2022) Physical properties of nanosized (x) NiO/(1−x)CdFe2O4 composites. Ceram Int 48(10):14825–14838. https://doi.org/10.1016/j.ceramint.2022.02.019

    Article  CAS  Google Scholar 

  80. Yehia M, Hashhash A (2019) Structural and magnetic study of Sm doped NiFe2O4 nanoparticles. J Mater Sci: Mater Electron 30:6768–6775. https://doi.org/10.1007/s10854-019-00988-9

    Article  CAS  Google Scholar 

  81. Al-Mokdad F, Bitar Z, Hassan RS, Yaacoub N, Awad R (2020) Effect of molybdenum doping on the structural and magnetic properties of MnFe2O4 magnetic nanoparticles. Appl Phys A 126:495. https://doi.org/10.1007/s00339-020-03687-z

    Article  CAS  Google Scholar 

  82. Lakshman A, Rao PS, Rao KH (2006) Mössbauer spectroscopic analyses of Mg0.9Cu0.1Mn0.05CrxFe1.95-xO4 spinel ferrites. Mater Lett 60(1):7–10. https://doi.org/10.1016/j.matlet.2005.07.043

    Article  CAS  Google Scholar 

  83. Patange S, Desai S, Meena S, Yusuf S, Shirsath SE (2015) Random site occupancy induced disordered Néel-type collinear spin alignment in heterovalent Zn2+–Ti4+ ion substituted CoFe2O4. RSC Adv 5:91482–91492. https://doi.org/10.1039/C5RA21522F

    Article  CAS  Google Scholar 

  84. Ata-Allah SS, Fayek MK, Yehia M (2004) Mössbauer and DC electrical resistivity study of Zn substituted tetragonal CuFe2-yGayO4 compound. J Mag Magn Mater 279:411–420. https://doi.org/10.1016/j.jmmm.2004.02.011

    Article  CAS  Google Scholar 

  85. He Y, Yang X, Lin J, Lin Q, Dong J (2015) Mössbauer spectroscopy, structural and magnetic studies of Zn2+ substituted magnesium ferrite nanomaterials prepared by Sol-Gel method. J Nanomater 2015:854840. https://doi.org/10.1155/2015/854840

    Article  Google Scholar 

  86. Naaz F, Dubey HK, Kumari C, Lahiri P (2020) Structural and magnetic properties of MgFe2O4 nanopowder synthesized via co-precipitation route. SN Appl Sci 2(5):808. https://doi.org/10.1007/s42452-020-2611-9

    Article  CAS  Google Scholar 

  87. Chandekar KV, Yadav SP, Chinke S, Shkir M (2023) Impact of Co-doped NiFe2O4 (CoxNi1-xFe2O4) nanostructures prepared by co-precipitation route on the structural, morphological, surface, and magnetic properties. J Alloys Compd 966:171556. https://doi.org/10.1016/j.jallcom.2023.171556

    Article  CAS  Google Scholar 

  88. Agboola PO, Haider S, Shakir I (2022) The impact of rare earth Nd3+ cations on structural, spectral, magnetic and dielectric parameters of NiFe2O4 nanoparticles. J Taibah Univ Sci 16(1):392–400. https://doi.org/10.1080/16583655.2022.2059953

    Article  Google Scholar 

  89. Ahmad SI, Ansari SA, Kumar DR (2018) Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater Chem Phys 208:248–257. https://doi.org/10.1016/j.matchemphys.2018.01.050

    Article  CAS  Google Scholar 

  90. Hossain MD, Jamil AT, Hossain MS, Ahmed SJ, Das HN, Rashid R, Hakim MA, Khan MN (2022) Investigation on structure, thermodynamic and multifunctional properties of Ni–Zn–Co ferrite for Gd3+ substitution. RSC Adv 12(8):4656–4671. https://doi.org/10.1039/D1RA04762K

    Article  CAS  Google Scholar 

  91. Belaiche Y, Minaoui K, Ouadou M, Elansary M, Ferdi CA (2021) New nanosized (Gd3+, Sm3+) co-doped zinc ferrite: structural, magnetic and first-principles study. Phys B: Condens Matter 619:413262. https://doi.org/10.1016/j.physb.2021.413262

    Article  CAS  Google Scholar 

  92. Jacob BP, Thankachan S, Xavier S, Mohammed E (2011) Effect of Gd3+ doping on the structural and magnetic properties of nanocrystalline Ni–Cd mixed ferrite. Phy Scr 84(4):045702. https://doi.org/10.1088/0031-8949/84/04/045702

    Article  CAS  Google Scholar 

  93. Peng J, Hojamberdiev M, Xu Y, Cao B, Wang J, Wu H (2011) Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J Magn Magn Mater 323(1):133–137. https://doi.org/10.1016/j.jmmm.2010.08.048

    Article  CAS  Google Scholar 

  94. Narang SB, Pubby K (2021) Nickel spinel ferrites: a review. J Magn Magn Mater 519:167163. https://doi.org/10.1016/j.jmmm.2020.167163

    Article  CAS  Google Scholar 

  95. Dippong T, Deac IG, Cadar O, Levei EA (2021) Effect of silica embedding on the structure, morphology and magnetic behavior of (Zn0.6Mn0.4Fe2O4)δ/(SiO2)(100−δ) nanoparticles. Nanomaterials 11(9):2232. https://doi.org/10.3390/nano11092232

    Article  CAS  Google Scholar 

  96. Murugesan C, Sathyamoorthy B, Chandrasekaran G (2015) Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles. Phys Scr 90(8):085809. https://doi.org/10.1088/0031-8949/90/8/085809

    Article  CAS  Google Scholar 

  97. Stoner EC, Wohlfarth E (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans Royal Soc London Ser A Math Phys Eng Sci 240(826):599–642. https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

  98. Mugutkar AB, Gore SK, Mane RS, Batoo KM, Adil SF, Jadhav SS (2018) Magneto-structural behaviour of Gd doped nanocrystalline Co-Zn ferrites governed by domain wall movement and spin rotations. Ceram Int 44(17):21675–21683. https://doi.org/10.1016/j.ceramint.2018.08.255

    Article  CAS  Google Scholar 

  99. Tholkappiyan R, Vishista K (2015) Combustion synthesis of Mg–Er ferrite nanoparticles: cation distribution and structural, optical, and magnetic properties. Mater Sci Semicond Process 40:631–642. https://doi.org/10.1016/j.mssp.2015.06.076

    Article  CAS  Google Scholar 

  100. Kadam R, Desai K, Shinde VS, Hashim M, Shirsath SE (2016) Influence of Gd3+ ion substitution on the MnCrFeO4 for their nanoparticle shape formation and magnetic properties. J Alloys Compd 657:487–494. https://doi.org/10.1016/j.jallcom.2015.10.164

    Article  CAS  Google Scholar 

  101. Dippong T, Levei EA, Cadar O, Deac IG, Lazar M, Borodi G et al (2020) Effect of amorphous SiO2 matrix on structural and magnetic properties of Cu0.6Co0.4Fe2O4/SiO2 nanocomposites. J Alloys Compd 849:156695. https://doi.org/10.1016/j.jallcom.2020.156695

    Article  CAS  Google Scholar 

  102. Jahan N, Uddin M, Khan M, Chowdhury F-U-Z, Hasan M, Das H et al (2021) Impact of particle size on the magnetic properties of highly crystalline Yb3+ substituted Ni–Zn nanoferrites. J Mater Sci: Mater Electron 32(12):16528–16543. https://doi.org/10.1007/s10854-021-06209-6

    Article  CAS  Google Scholar 

  103. Devi EC, Singh SD (2021) Tracing the magnetization curves: a review on their importance, strategy, and outcomes. J Supercond Nov Magn 34:15–25. https://doi.org/10.1007/s10948-020-05733-6

    Article  CAS  Google Scholar 

  104. Devi EC, Soibam I (2019) Law of approach to saturation in Mn–Zn ferrite nanoparticles. J Supercond Nov Magn 32:1293–1298. https://doi.org/10.1007/s10948-018-4823-4

    Article  CAS  Google Scholar 

  105. Frajer G, Isnard O, Chazal H, Delette G (2019) Effect of cobalt addition on the magneto-crystalline anisotropy parameter of sintered NiZn ferrites evaluated from magnetization curves. J Magn Magn Mater 473:92–98. https://doi.org/10.1016/j.jmmm.2018.10.030

    Article  CAS  Google Scholar 

  106. Chanu LP, Phanjoubam S (2023) On the structural and magnetic properties of Sr-substituted LaMnO3 nanoparticles (La1-xSrxMnO3). Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.04.621

  107. Devi EC, Soibam I (2019) Magnetic properties and law of approach to saturation in Mn-Ni mixed nanoferrites. J Alloys and Compd 772:920–924. https://doi.org/10.1016/j.jallcom.2018.09.160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out in the Specialized Materials Science Lab and Advanced Nanomaterials Research Lab at Beirut Arab University in Lebanon in collaboration with Alexandria University in Egypt. Furthermore, the Mössbauer analysis was performed at the Université du Mans in France.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ramadan Awad; data curation: Amani Aridi, Maraim Rabaa, and Ramy Moussa; formal analysis: Amani Aridi, Mariam Rabaa, Ramy Moussa, and Ramadan Awad; writing—original draft preparation: Amani Aridi, Maraim Rabaa, and Ramy Moussa; writing—review and editing: Amani Aridi, Mariam Rabaa, Ramy Moussa, Roudaina Sayed Hassan, Nader Yaacoub, and Ramadan Awad; resources: Roudaina Sayed Hassan, Nader Yaacoub, and Ramadan Awad; supervision: Ramadan Awad. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amani Aridi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• (Mg–Ni–Co) nanoferrites doped with Gd3+ were synthesized by the coprecipitation method.

• Doping the (Mg–Ni–Co) nanoferrites with Gd3+ increases the lattice constant and reduces the particle size and saturation magnetization.

• Raman analysis has verified the existence of active modes related to the spinel ferrite structure.

• Referring to the Mössbauer analysis, Gd3+ ions occupy the octahedral sites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aridi, A., Rabaa, M., Moussa, R. et al. Influence of Gd3+ ion doping on structural, optical, and magnetic properties of (Mg–Ni–Co) nanoferrites. J Nanopart Res 25, 228 (2023). https://doi.org/10.1007/s11051-023-05879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05879-z

Keywords

Navigation