Skip to main content

Advertisement

Log in

Nanoarchitectonics: functional nanomaterials and nanostructures—a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Functional materials are required to address social needs such as environmental protection, energy storage and conversion, integrated goods production, and biological and medicinal treatments. Nanoarchitectonics is a research concept that logically develops functional materials from nanoscale units by combining nanotechnology with other fields of study including supramolecular chemistry, materials science, and biological sciences. In this review article, we discuss the fundamentals and types of nanoarchitectonics, synthesis of zero-dimensional (0-D), one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) nanomaterials from bottom-up and top-down methods, and conversion of these materials into functional materials. Various physical and chemical methods for producing nanomaterials are also discussed briefly. Then, applications of functional materials in numerous fields such as energy storage, supercapacitor, sensors, electromagnetic interference (EMI) shielding, water purification, and other bio-related applications such as anticancer therapy, drug delivery, and tissue engineering are discussed. Finally, future challenges of materials nanoarchitectonics concepts for the advancement of functional nanomaterials are explained briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ariga K, Yamauchi Y, Aono M (2015) Commentary: Nanoarchitectonics—think about NANO again. APL Mater 3(6):061001. https://doi.org/10.1063/1.4922549

    Article  CAS  Google Scholar 

  2. Hulla J, Sahu S, Hayes A (2015) Nanotechnology: history and future. Hum Exp Toxicol 34(12):1318–1321. https://doi.org/10.1177/0960327115603588

    Article  CAS  Google Scholar 

  3. Chircov C, Grumezescu AM (2019) Chapter 1 - Basics in nanoarchitectonics. In: Grumezescu AM (ed) Nanoarchitectonics in biomedicine. William Andrew Publishing, pp 1–21. https://doi.org/10.1016/B978-0-12-816200-2.00001-3

  4. Ramsden JJ (2018) Chapter 1 - What is nanotechnology? In: Ramsden JJ (ed) Applied Nanotechnology The Conversion of Research Results to Products, 3rd Eds. William Andrew Publishing, pp 3–13. https://doi.org/10.1016/B978-0-12-813343-9.00002-0

  5. Ariga K, Mori T, Shrestha LK (2018) Nanoarchitectonics from molecular units to living-creature-like motifs. Chem Rec 18(7–8):676–695. https://doi.org/10.1002/tcr.201700070

    Article  CAS  Google Scholar 

  6. Ariga K (2017) Nanoarchitectonics: a navigator from materials to life. Mater Chem Front 1(2):208–211. https://doi.org/10.1039/c6qm00240d

    Article  CAS  Google Scholar 

  7. Ariga K (2021) Progress in molecular nanoarchitectonics and materials nanoarchitectonics. Molecules 26(6):1621

    Article  CAS  Google Scholar 

  8. Nazari A (2020) Chapter 1 - Nanosensors for smart cities: an introduction. In: Han B, Tomer V, Nguyen T, Farmani A, Singh PK (eds) Nanosensors for smart cities. Elsevier, pp 3–8. https://doi.org/10.1016/B978-0-12-819870-4.00001-3

  9. Shrestha RG, Shrestha LK, Ariga K (2021) Carbon nanoarchitectonics for energy and related applications. C 7(4):73

    CAS  Google Scholar 

  10. Abe H, Liu J, Ariga K (2016) Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater Today 19(1):12–18. https://doi.org/10.1016/j.mattod.2015.08.021

    Article  CAS  Google Scholar 

  11. Maji S, Shrestha LK, Ariga K (2020) Nanoarchitectonics for nanocarbon assembly and composite. J Inorg Organomet Polym Mater 30(1):42–55. https://doi.org/10.1007/s10904-019-01294-x

    Article  CAS  Google Scholar 

  12. Harano K (2021) Self-assembly mechanism in nucleation processes of molecular crystalline materials. Bull Chem Soc Jpn 94(2):463–472. https://doi.org/10.1246/bcsj.20200333

    Article  CAS  Google Scholar 

  13. Wang Z, Hu T, Liang R, Wei M (2020) Application of zero-dimensional nanomaterials in biosensing. Front Chem 8.https://doi.org/10.3389/fchem.2020.00320

  14. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  15. Zhao L, Zou Q, Yan X (2019) Self-assembling peptide-based nanoarchitectonics. Bull Chem Soc Jpn 92(1):70–79. https://doi.org/10.1246/bcsj.20180248

    Article  CAS  Google Scholar 

  16. Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP (2019) Self-assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater 20(1):51–95. https://doi.org/10.1080/14686996.2018.1553108

    Article  CAS  Google Scholar 

  17. Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90(6):627–648. https://doi.org/10.1246/bcsj.20170043

    Article  Google Scholar 

  18. Kebede MA, Imae T (2019) Chapter 1.1 - Low-dimensional nanomaterials. In: Ariga K, Aono M (eds) Advanced supramolecular nanoarchitectonics., Micro and Nano Technologies. William Andrew Publishing, pp 3–16. https://doi.org/10.1016/B978-0-12-813341-5.00001-2

  19. Ariga K, Watanabe S, Mori T, Takeya J (2018) Soft 2D nanoarchitectonics. NPG Asia Mater 10(4):90–106. https://doi.org/10.1038/s41427-018-0022-9

    Article  Google Scholar 

  20. Ariga K, Shrestha LK (2019) Supramolecular nanoarchitectonics for functional materials. APL Mater 7(12):120903. https://doi.org/10.1063/1.5134530

    Article  CAS  Google Scholar 

  21. Rawtani D, Agrawal YK (2014) Emerging strategies and applications of layer-by-layer self-assembly. Nanobiomedicine 1:8. https://doi.org/10.5772/60009

    Article  Google Scholar 

  22. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9(1):257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025

    Article  CAS  Google Scholar 

  23. Hornyak GL, Moore JJ, Tibbals HF, Dutta J (2009) Fundamentals of nanotechnology, 1st edn. CRC Press. https://doi.org/10.1201/9781315222561

  24. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in layer-by-layer assembly. Chem Rev 116(23):14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

    Article  CAS  Google Scholar 

  25. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254(5036):1312–1319. https://doi.org/10.1126/science.1962191

    Article  CAS  Google Scholar 

  26. Mastrangeli M (2015) Mesoscopic self-assembly: a shift to complexity. Front Mech Eng 1.https://doi.org/10.3389/fmech.2015.00006

  27. Xu H, Chen D, Wang S, Zhou Y, Sun J, Zhang W, Zhang X (2013) Macromolecular self-assembly and nanotechnology in China. Philos Trans R Soc A Math Phys Eng Sci 371(2000):20120305. https://doi.org/10.1098/rsta.2012.0305

    Article  CAS  Google Scholar 

  28. Rydzek G, Ji Q, Li M, Schaaf P, Hill JP, Boulmedais F, Ariga K (2015) Electrochemical nanoarchitectonics and layer-by-layer assembly: from basics to future. Nano Today 10(2):138–167. https://doi.org/10.1016/j.nantod.2015.02.008

    Article  CAS  Google Scholar 

  29. Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KC-W, Hill JP (2014) Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43(1):36–68. https://doi.org/10.1246/cl.130987

    Article  CAS  Google Scholar 

  30. Borges J, Mano JF (2014) Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114(18):8883–8942. https://doi.org/10.1021/cr400531v

    Article  CAS  Google Scholar 

  31. Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS (2021) Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 18(8):1047–1066

    Article  CAS  Google Scholar 

  32. Ariga K (2021) Nanoarchitectonics revolution and evolution: from small science to big technology. Small Sci 1(1):2000032. https://doi.org/10.1002/smsc.202000032

    Article  CAS  Google Scholar 

  33. Dubas ST, Farhat TR, Schlenoff JB (2001) Multiple membranes from “true” polyelectrolyte multilayers. J Am Chem Soc 123(22):5368–5369. https://doi.org/10.1021/ja015774+

    Article  CAS  Google Scholar 

  34. Izquierdo A, Ono SS, Voegel JC, Schaaf P, Decher G (2005) Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21(16):7558–7567. https://doi.org/10.1021/la047407s

    Article  CAS  Google Scholar 

  35. Hu H, Pauly M, Felix O, Decher G (2017) Spray-assisted alignment of layer-by-layer assembled silver nanowires: a general approach for the preparation of highly anisotropic nano-composite films. Nanoscale 9(3):1307–1314. https://doi.org/10.1039/c6nr08045f

    Article  CAS  Google Scholar 

  36. Ariga K, Ahn E, Park M, Kim B-S (2019) Layer-by-layer assembly: recent progress from layered assemblies to layered nanoarchitectonics. Chem Asian J 14(15):2553–2566. https://doi.org/10.1002/asia.201900627

    Article  CAS  Google Scholar 

  37. Schlenoff JB, Dubas ST, Farhat T (2000) Sprayed polyelectrolyte multilayers. Langmuir 16(26):9968–9969

    Article  CAS  Google Scholar 

  38. Rydzek G, Terentyeva TG, Pakdel A, Golberg D, Hill JP, Ariga K (2014) Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms. ACS Nano 8(5):5240–5248. https://doi.org/10.1021/nn501306y

    Article  CAS  Google Scholar 

  39. Guan J, He K, Gunasekaran S (2022) Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 243:123292. https://doi.org/10.1016/j.talanta.2022.123292

    Article  CAS  Google Scholar 

  40. Li H, Yan X, Kong D, Su D, Liu F, Sun P, Liu X, Wang C, Jia X, Lu G (2022) Self-assembled multiprotein nanostructures with enhanced stability and signal amplification capability for sensitive fluorogenic immunoassays. Biosens Bioelectron 206:114132. https://doi.org/10.1016/j.bios.2022.114132

  41. Ramachandran K, Daoudi K, Columbus S, Chidambaram S, Gaidi M (2022) Green production of self-assembled silver nanoarrays on flexible substrate for direct detection and catalytic degradation of organic water pollutants. Environ Technol Innov 27:102409. https://doi.org/10.1016/j.eti.2022.102409

    Article  CAS  Google Scholar 

  42. Wang Q, Li C, Wei L, Lu C, Chen M, Yang H, Guo L, Duan H (2022) Microwave-assisted synthesis of self-assembly urchin-like ruthenium nanostructures in benzyl alcohol-glycerol mixed solvents. J Cryst Growth 581:126514. https://doi.org/10.1016/j.jcrysgro.2022.126514

    Article  CAS  Google Scholar 

  43. Kumar J, Liz-Marzán LM (2019) Recent advances in chiral plasmonics — towards biomedical applications. Bull Chem Soc Jpn 92(1):30–37. https://doi.org/10.1246/bcsj.20180236

    Article  CAS  Google Scholar 

  44. Ariga K, Mori T, Kitao T, Uemura T (2020) Supramolecular chiral nanoarchitectonics. Adv Mater 32(41):1905657. https://doi.org/10.1002/adma.201905657

    Article  CAS  Google Scholar 

  45. Liu J, Zhou H, Yang W, Ariga K (2020) Soft nanoarchitectonics for enantioselective biosensing. Acc Chem Res 53(3):644–653. https://doi.org/10.1021/acs.accounts.9b00612

    Article  CAS  Google Scholar 

  46. Zhang H, Li S, Qu A, Hao C, Sun M, Xu L, Xu C, Kuang H (2020) Engineering of chiral nanomaterials for biomimetic catalysis. Chem Sci 11(48):12937–12954. https://doi.org/10.1039/d0sc03245j

    Article  CAS  Google Scholar 

  47. Zhang L, Wang T, Shen Z, Liu M (2016) Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv Mater 28(6):1044–1059. https://doi.org/10.1002/adma.201502590

    Article  CAS  Google Scholar 

  48. Shrestha LK, Mori T, Ariga K (2018) Dynamic nanoarchitectonics: supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. Curr Opin Colloid Interface Sci 35:68–80. https://doi.org/10.1016/j.cocis.2018.01.007

  49. Jiang H, Fan H, Jiang Y, Zhang L, Liu M (2019) Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects. Beilstein J Nanotechnol 10:1608–1617. https://doi.org/10.3762/bjnano.10.156

    Article  CAS  Google Scholar 

  50. Nakagawa M, Kawai T (2018) Chirality-controlled syntheses of double-helical Au nanowires. J Am Chem Soc 140(15):4991–4994. https://doi.org/10.1021/jacs.8b00910

    Article  CAS  Google Scholar 

  51. de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39(9):3499–3509. https://doi.org/10.1039/b917574c

    Article  CAS  Google Scholar 

  52. Cao H, Yuan Q, Zhu X, Zhao Y-P, Liu M (2012) Hierarchical self-assembly of achiral amino acid derivatives into dendritic chiral nanotwists. Langmuir 28(43):15410–15417. https://doi.org/10.1021/la303263g

    Article  CAS  Google Scholar 

  53. Sun C-Y, Qin C, Wang C-G, Su Z-M, Wang S, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Wang E-B (2011) Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv Mater 23(47):5629–5632. https://doi.org/10.1002/adma.201102538

    Article  CAS  Google Scholar 

  54. Ariga K, Vinu A, Yamauchi Y, Ji Q, Hill JP (2012) Nanoarchitectonics for mesoporous materials. Bull Chem Soc Jpn 85(1):1–32. https://doi.org/10.1246/bcsj.20110162

    Article  CAS  Google Scholar 

  55. Chen Y, Lu P, Gui Q, Li Z, Yuan Y, Zhang H (2021) Preparation of chiral luminescent liquid crystals and manipulation effect of phase structures on the circularly polarized luminescence property. J Mater Chem C 9(4):1279–1286. https://doi.org/10.1039/d0tc04832a

    Article  CAS  Google Scholar 

  56. Salerno KM, Grest GS (2015) Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes. Faraday Discuss 181:339–354. https://doi.org/10.1039/c4fd00249k

    Article  CAS  Google Scholar 

  57. Park C, Yoon E, Kawano M, Joo T, Choi HC (2010) Self-crystallization of C70 cubes and remarkable enhancement of photoluminescence. Angew Chem Int Ed 49(50):9670–9675. https://doi.org/10.1002/anie.201005076

    Article  CAS  Google Scholar 

  58. Park JE, Son M, Hong M, Lee G, Choi HC (2012) Crystal-plane-dependent photoluminescence of pentacene 1D wire and 2D disk crystals. Angew Chem Int Ed 51(26):6383–6388. https://doi.org/10.1002/anie.201201971

    Article  CAS  Google Scholar 

  59. Sang Y, Liu M (2019) Nanoarchitectonics through supramolecular gelation: formation and switching of diverse nanostructures. Mol Syst Des Eng 4(1):11–28. https://doi.org/10.1039/c8me00068a

    Article  CAS  Google Scholar 

  60. Ariga K (2021) Nanoarchitectonics for analytical science at interfaces and with supramolecular nanostructures. Anal Sci. https://doi.org/10.2116/analsci.21R003

    Article  Google Scholar 

  61. Takimiya K, Nakano M (2018) Thiophene-fused naphthalene diimides: new building blocks for electron deficient π-functional materials. Bull Chem Soc Jpn 91(1):121–140. https://doi.org/10.1246/bcsj.20170298

    Article  CAS  Google Scholar 

  62. Bonifazi D, Enger O, Diederich F (2007) Supramolecular [60]fullerene chemistry on surfaces. Chem Soc Rev 36(2):390–414. https://doi.org/10.1039/b604308a

    Article  CAS  Google Scholar 

  63. Toyota S, Yamamoto Y, Wakamatsu K, Tsurumaki E, Muñoz-Castro A (2019) Nano-Saturn with an ellipsoidal body: anthracene macrocyclic ring–C70 complex. Bull Chem Soc Jpn 92(10):1721–1728. https://doi.org/10.1246/bcsj.20190133

    Article  CAS  Google Scholar 

  64. Chen G, Shrestha LK, Ariga K (2021) Zero-to-two nanoarchitectonics: fabrication of two-dimensional materials from zero-dimensional fullerene. Molecules 26(15):4636

    Article  CAS  Google Scholar 

  65. Neal EA, Nakanishi T (2021) Alkyl-fullerene materials of tunable morphology and function. Bull Chem Soc Jpn 94(6):1769–1788. https://doi.org/10.1246/bcsj.20210129

    Article  CAS  Google Scholar 

  66. Maji S, Shrestha LK, Ariga K (2021) Nanoarchitectonics for hierarchical fullerene nanomaterials. Nanomaterials 11(8):2146

    Article  CAS  Google Scholar 

  67. Maji S, Shrestha RG, Lee J, Han SA, Hill JP, Kim JH, Ariga K, Shrestha LK (2021) Macaroni fullerene crystals-derived mesoporous carbon tubes as a high rate performance supercapacitor electrode material. Bull Chem Soc Jpn 94(5):1502–1509. https://doi.org/10.1246/bcsj.20210059

    Article  CAS  Google Scholar 

  68. Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H, Li H, Zhu D, Yu D, Xu J, Xiang B (2002) Imaging as-grown [60] fullerene nanotubes by template technique. J Am Chem Soc 124(45):13370–13371. https://doi.org/10.1021/ja0280527

    Article  CAS  Google Scholar 

  69. Shrestha LK, Shrestha RG, Yamauchi Y, Hill JP, Nishimura T, Ki M, Kawai T, Okada S, Wakabayashi K, Ariga K (2015) Nanoporous carbon tubes from fullerene crystals as the π-electron carbon source. Angew Chem Int Ed 54(3):951–955. https://doi.org/10.1002/anie.201408856

    Article  CAS  Google Scholar 

  70. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24. https://doi.org/10.1002/adfm.200390013

    Article  Google Scholar 

  71. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389. https://doi.org/10.1002/adma.200390087

    Article  CAS  Google Scholar 

  72. Lei Y, Wang S, Lai Z, Yao X, Zhao Y, Zhang H, Chen H (2019) Two-dimensional C60 nano-meshes via crystal transformation. Nanoscale 11(18):8692–8698. https://doi.org/10.1039/c8nr09329f

    Article  CAS  Google Scholar 

  73. Peng Z, Su M, Jiang J, Ma G, Zhang R, Yu A, Peng P, Li F-F (2021) From 3D hierarchical microspheres to 1D microneedles: the unique role of water in the morphology control of ferrocenylpyrrolidine C60 microcrystals. Nanoscale 13(12):6030–6037. https://doi.org/10.1039/d1nr00723h

    Article  CAS  Google Scholar 

  74. Partheeban T, Sathish M (2016) Selective growth of fullerene octahedra and flower-like particles by a liquid–liquid interfacial precipitation method for super-hydrophobic applications. RSC Adv 6(82):78791–78794. https://doi.org/10.1039/c6ra15846c

    Article  CAS  Google Scholar 

  75. Elemans JAAW, van Hameren R, Nolte RJM, Rowan AE (2006) Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv Mater 18(10):1251–1266. https://doi.org/10.1002/adma.200502498

    Article  CAS  Google Scholar 

  76. Wang Z, Li Z, Medforth CJ, Shelnutt JA (2007) Self-assembly and self-metallization of porphyrin nanosheets. J Am Chem Soc 129(9):2440–2441. https://doi.org/10.1021/ja068250o

    Article  CAS  Google Scholar 

  77. Liu K, Xing R, Chen C, Shen G, Yan L, Zou Q, Ma G, Möhwald H, Yan X (2015) Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. Angew Chem Int Ed 54(2):500–505. https://doi.org/10.1002/anie.201409149

    Article  CAS  Google Scholar 

  78. Chen Y, Li K, Lu W, Chui SS-Y, Ma C-W, Che C-M (2009) Photoresponsive supramolecular organometallic nanosheets induced by PtII···PtII and C-H···π interactions. Angew Chem Int Ed 48(52):9909–9913. https://doi.org/10.1002/anie.200905678

    Article  CAS  Google Scholar 

  79. Albrecht M, van Koten G (2001) Platinum group organometallics based on “pincer” complexes: sensors, switches, and catalysts. Angew Chem Int Ed 40(20):3750–3781. https://doi.org/10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6

    Article  CAS  Google Scholar 

  80. Zhang W, Jiang X, Zhao Y, Carné-Sánchez A, Malgras V, Kim J, Kim JH, Wang S, Liu J, Jiang J-S (2017) Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem Sci 8(5):3538–3546

    Article  CAS  Google Scholar 

  81. Ariga K (2021) Nanoarchitectonics can save our planet: nanoarchitectonics for energy and environment. J Inorg Organomet Polym Mater 31(6):2243–2244. https://doi.org/10.1007/s10904-021-02002-4

    Article  CAS  Google Scholar 

  82. Li Y, Henzie J, Park T, Wang J, Young C, Xie H, Yi JW, Li J, Kim M, Kim J, Yamauchi Y, Na J (2020) Fabrication of flexible microsupercapacitors with binder-free ZIF-8 derived carbon films via electrophoretic deposition. Bull Chem Soc Jpn 93(1):176–181. https://doi.org/10.1246/bcsj.20190298

    Article  CAS  Google Scholar 

  83. Azzaroni O, Cortez ML, Rafti M, Marmisollé WA, Ariga K (2022) CHAPTER 23 Materials nanoarchitectonics here, there, everywhere: looking back and leaping forward. In: Concepts and design of materials nanoarchitectonics. The Royal Society of Chemistry, pp 546–578. https://doi.org/10.1039/9781788019613-00546

  84. Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater 4(5):e17–e17. https://doi.org/10.1038/am.2012.30

    Article  CAS  Google Scholar 

  85. Leng K, Zhang F, Zhang L, Zhang T, Wu Y, Lu Y, Huang Y, Chen Y (2013) Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res 6(8):581–592. https://doi.org/10.1007/s12274-013-0334-6

    Article  CAS  Google Scholar 

  86. Wang X, Wang M, Zhang X, Li H, Guo X (2016) Low-cost, green synthesis of highly porous carbons derived from lotus root shell as superior performance electrode materials in supercapacitor. J Energy Chem 25(1):26–34. https://doi.org/10.1016/j.jechem.2015.10.012

    Article  CAS  Google Scholar 

  87. Shrestha RL, Chaudhary R, Shrestha T, Tamrakar BM, Shrestha RG, Maji S, Hill JP, Ariga K, Shrestha LK (2020) Nanoarchitectonics of lotus seed derived nanoporous carbon materials for supercapacitor applications. Materials 13(23):5434

    Article  CAS  Google Scholar 

  88. Liu H, Liu R, Xu C, Ren Y, Tang D, Zhang C, Li F, Wei X, Zhang R (2020) Oxygen–nitrogen–sulfur self-doping hierarchical porous carbon derived from lotus leaves for high-performance supercapacitor electrodes. J Power Sources 479:228799. https://doi.org/10.1016/j.jpowsour.2020.228799

    Article  CAS  Google Scholar 

  89. Zhang L, Yuan J, Su S, Cui Y, Shi W, Zhu X (2021) Porous active carbon derived from lotus stalk as electrode material for high-performance supercapacitors. J Wood Chem Technol 41(1):46–57. https://doi.org/10.1080/02773813.2020.1861020

    Article  CAS  Google Scholar 

  90. Liu B, Zhou X, Chen H, Liu Y, Li H (2016) Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim Acta 208:55–63. https://doi.org/10.1016/j.electacta.2016.05.020

    Article  CAS  Google Scholar 

  91. Shrestha LK, Adhikari L, Shrestha RG, Adhikari MP, Adhikari R, Hill JP, Pradhananga RR, Ariga K (2016) Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C1/C2 alcohol discrimination. Sci Technol Adv Mater 17(1):483–492. https://doi.org/10.1080/14686996.2016.1219971

    Article  CAS  Google Scholar 

  92. Shrestha LK, Shrestha RG, Maji S, Pokharel BP, Rajbhandari R, Shrestha RL, Pradhananga RR, Hill JP, Ariga K (2020) High surface area nanoporous graphitic carbon materials derived from Lapsi seed with enhanced supercapacitance. Nanomaterials 10(4):728

    Article  CAS  Google Scholar 

  93. Shrestha RL, Shrestha T, Tamrakar BM, Shrestha RG, Maji S, Ariga K, Shrestha LK (2020) Nanoporous carbon materials derived from washnut seed with enhanced supercapacitance. Materials 13(10):2371

    Article  CAS  Google Scholar 

  94. Chaudhary R, Maji S, Shrestha RG, Shrestha RL, Shrestha T, Ariga K, Shrestha LK (2020) Jackfruit seed-derived nanoporous carbons as the electrode material for supercapacitors. C 6(4):73

    CAS  Google Scholar 

  95. Mathew S, Karandikar PB, Kulkarni NR (2020) Modeling and optimization of a jackfruit seed-based supercapacitor electrode using machine learning. Chem Eng Technol 43(9):1765–1773. https://doi.org/10.1002/ceat.201900616

    Article  CAS  Google Scholar 

  96. Massad-Ivanir N, Segal E (2014) Chapter 12 - Porous silicon for bacteria detection. In: Santos HA (ed) Porous silicon for biomedical applications, 1st Eds. Woodhead Publishing, pp 286–303. https://doi.org/10.1533/9780857097156.2.286

  97. Tang Y, Li Z, Luo Q, Liu J, Wu J (2016) Bacteria detection based on its blockage effect on silicon nanopore array. Biosens Bioelectron 79:715–720. https://doi.org/10.1016/j.bios.2015.12.109

    Article  CAS  Google Scholar 

  98. Vercauteren R, Leprince A, Mahillon J, Francis LA (2021) Porous silicon biosensor for the detection of bacteria through their lysate. Biosensors (Basel) 11(2):27. https://doi.org/10.3390/bios11020027

    Article  CAS  Google Scholar 

  99. Gusak V, Heiniger L-P, Graetzel M, Langhammer C, Kasemo B (2012) Time-resolved indirect nanoplasmonic sensing spectroscopy of dye molecule interactions with dense and mesoporous TiO2 films. Nano Lett 12(5):2397–2403. https://doi.org/10.1021/nl3003842

    Article  CAS  Google Scholar 

  100. Ariga K, Yamauchi Y, Ji Q, Yonamine Y, Hill JP (2014) Research Update: Mesoporous sensor nanoarchitectonics. APL Mater 2(3):030701. https://doi.org/10.1063/1.4868177

    Article  CAS  Google Scholar 

  101. Vaz R, Frasco MF, Sales MGF (2022) Chapter 4 - Biosensors: concept and importance in point-of-care disease diagnosis. In: Khan R, Parihar A, Sanghi SK (eds) Biosensor based advanced cancer diagnostics, 1st Eds. Academic Press, pp 59–84. https://doi.org/10.1016/B978-0-12-823424-2.00001-6

  102. Zheng Y (2021) Applications of electrochemical biosensors for glucose detection. In: 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), pp 1536–1540. https://doi.org/10.1109/iaecst54258.2021.9695939

  103. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8(3):1400–1458

    Article  CAS  Google Scholar 

  104. Guo W, Duan X, Shen Y, Qi K, Wei C, Zheng W (2013) Ionothermal synthesis of mesoporous SnO2 nanomaterials and their gas sensitivity depending on the reducing ability of toxic gases. Phys Chem Chem Phys 15(27):11221–11225. https://doi.org/10.1039/c3cp51663f

    Article  CAS  Google Scholar 

  105. Ren G, Li Z, Yang W, Faheem M, Xing J, Zou X, Pan Q, Zhu G, Du Y (2019) ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sensors Actuators B Chem 284:421–427. https://doi.org/10.1016/j.snb.2018.12.145

    Article  CAS  Google Scholar 

  106. Hu M, Torad NL, Yamauchi Y (2012) Preparation of various Prussian Blue analogue hollow nanocubes with single crystalline shells. Eur J Inorg Chem 30:4795–4799. https://doi.org/10.1002/ejic.201200654

    Article  CAS  Google Scholar 

  107. Kurosawa S, Park J-W, Aizawa H, Wakida S-I, Tao H, Ishihara K (2006) Quartz crystal microbalance immunosensors for environmental monitoring. Biosens Bioelectron 22(4):473–481. https://doi.org/10.1016/j.bios.2006.06.030

    Article  CAS  Google Scholar 

  108. Febrina M, Rianjanu A, Rajak A, Mukti RR, Djamal M (2022) Electrospun polyacrylonitrile nanofibers mixed with citric acid as a quartz crystal microbalance ammonia vapor sensor. ChemistrySelect 7(1):e202103615. https://doi.org/10.1002/slct.202103615

    Article  CAS  Google Scholar 

  109. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627. https://doi.org/10.1126/science.1082387

    Article  CAS  Google Scholar 

  110. Zou Q, Zhang L, Yan X, Wang A, Ma G, Li J, Möhwald H, Mann S (2014) Multifunctional porous microspheres based on peptide–porphyrin hierarchical co-assembly. Angew Chem Int Ed 53(9):2366–2370. https://doi.org/10.1002/anie.201308792

    Article  CAS  Google Scholar 

  111. Zhao F, Shen G, Chen C, Xing R, Zou Q, Ma G, Yan X (2014) Nanoengineering of stimuli-responsive protein-based biomimetic protocells as versatile drug delivery tools. Chem Eur J 20(23):6880–6887. https://doi.org/10.1002/chem.201400348

    Article  CAS  Google Scholar 

  112. Zhang N, Zhao F, Zou Q, Li Y, Ma G, Yan X (2016) Multitriggered tumor-responsive drug delivery vehicles based on protein and polypeptide coassembly for enhanced photodynamic tumor ablation. Small 12(43):5936–5943. https://doi.org/10.1002/smll.201602339

    Article  CAS  Google Scholar 

  113. Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321(5897):1795–1799. https://doi.org/10.1126/science.1154533

    Article  CAS  Google Scholar 

  114. Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT (2014) Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces 6(24):21822–21831. https://doi.org/10.1021/am502591c

    Article  CAS  Google Scholar 

  115. Surana S, Bhat JM, Koushika SP, Krishnan Y (2011) An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2(1):340. https://doi.org/10.1038/ncomms1340

    Article  CAS  Google Scholar 

  116. Song J, Jia X, Ariga K (2020) Interfacial nanoarchitectonics for responsive cellular biosystems. Mater Today Bio 8:100075. https://doi.org/10.1016/j.mtbio.2020.100075

    Article  Google Scholar 

  117. Komiyama M, Mori T, Ariga K (2018) Molecular imprinting: materials nanoarchitectonics with molecular information. Bull Chem Soc Jpn 91(7):1075–1111. https://doi.org/10.1246/bcsj.20180084

    Article  CAS  Google Scholar 

  118. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594. https://doi.org/10.1189/jlb.0205074

    Article  CAS  Google Scholar 

  119. Chung D (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353

    Article  CAS  Google Scholar 

  120. Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112(4):2073–2086. https://doi.org/10.1002/app.29812

    Article  CAS  Google Scholar 

  121. Carlberg M, Koppel T, Ahonen M, Hardell L (2018) Case-control study on occupational exposure to extremely low-frequency electromagnetic fields and the association with Meningioma. Biomed Res Int 5912394. https://doi.org/10.1155/2018/5912394

  122. Markham D (1999) Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Mater Des 21(1):45–50. https://doi.org/10.1016/S0261-3069(99)00049-7

    Article  Google Scholar 

  123. Geim AK, Novoselov KS (2009) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 11–19

  124. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  CAS  Google Scholar 

  125. Ling J, Zhai W, Feng W, Shen B, Zhang J, Wg Z (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684

    Article  CAS  Google Scholar 

  126. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432

    Article  CAS  Google Scholar 

  127. Li W, Gao S, Wu L, Qiu S, Guo Y, Geng X, Chen M, Liao S, Zhu C, Gong Y (2013) High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci Rep 3(1):1–6

    Google Scholar 

  128. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3):2693–2703

    Article  CAS  Google Scholar 

  129. Chen Y, Song X, Zhao T, Xiao Y, Wang Y, Chen X (2018) A phosphorylethanolamine-functionalized super-hydrophilic 3D graphene-based foam filter for water purification. J Hazard Mater 343:298–303. https://doi.org/10.1016/j.jhazmat.2017.09.045

    Article  CAS  Google Scholar 

  130. Ariga K (2021) Nanoarchitectonics at interfaces for regulations of biorelated phenomena: small structures with big effects. Small Structures 2(6):2100006. https://doi.org/10.1002/sstr.202100006

    Article  CAS  Google Scholar 

  131. Guryanov I, Naumenko E, Fakhrullin R (2022) Hair surface engineering: combining nanoarchitectonics with hair topical and beauty formulations. Appl Surface Sci Adv 7:100188. https://doi.org/10.1016/j.apsadv.2021.100188

    Article  Google Scholar 

  132. Li Y, Zou Q, Yuan C, Li S, Xing R, Yan X (2018) Amino acid coordination driven self-assembly for enhancing both the biological stability and tumor accumulation of curcumin. Angew Chem Int Ed 57(52):17084–17088. https://doi.org/10.1002/anie.201810087

    Article  CAS  Google Scholar 

  133. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45(48):8149–8152. https://doi.org/10.1002/anie.200602251

    Article  CAS  Google Scholar 

  134. Zhu G, Niu G, Chen X (2015) Aptamer–drug conjugates. Bioconjug Chem 26(11):2186–2197. https://doi.org/10.1021/acs.bioconjchem.5b00291

    Article  CAS  Google Scholar 

  135. Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi HA (2016) Review on the binding of anticancer drug doxorubicin with DNA and tRNA: structural models and antitumor activity. J Photochem Photobiol B 158:274–279. https://doi.org/10.1016/j.jphotobiol.2016.02.032

    Article  CAS  Google Scholar 

  136. Zhang WWF, Wang Y, Wang J, Yu Y, Guo S, Chen R, Zhou D (2016) pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J Control Release 232:9–19. https://doi.org/10.1016/j.jconrel.2016.04.001

    Article  CAS  Google Scholar 

  137. Song J, Yuan C, Jiao T, Xing R, Yang M, Adams DJ, Yan X (2020) Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated self-assembly. Small 16(8):1907309. https://doi.org/10.1002/smll.201907309

    Article  CAS  Google Scholar 

  138. Chow LW, Bitton R, Webber MJ, Carvajal D, Shull KR, Sharma AK, Stupp SI (2011) A bioactive self-assembled membrane to promote angiogenesis. Biomaterials 32(6):1574–1582. https://doi.org/10.1016/j.biomaterials.2010.10.048

    Article  CAS  Google Scholar 

  139. Zhang S, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9(7):594–601. https://doi.org/10.1038/nmat2778

    Article  CAS  Google Scholar 

  140. Lvov YM, Pattekari P, Zhang X, Torchilin V (2011) Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 27(3):1212–1217. https://doi.org/10.1021/la1041635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India, for their constant support and encouragement throughout of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepshikha Gupta or Tejendra Kumar Gupta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: “Nanoarchitectonics for Functional Particles and Materials

Guest Editor: Katsuhiko Ariga

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Varghese, B.S., Suresh, M. et al. Nanoarchitectonics: functional nanomaterials and nanostructures—a review. J Nanopart Res 24, 196 (2022). https://doi.org/10.1007/s11051-022-05577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05577-2

Keywords

Navigation