Skip to main content
Log in

Facile synthesis of superparamagnetic Fe3O4 nanoparticles at therapeutic temperature range for magnetic hyperthermia therapy

  • Brief Communications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Superparamagnetic Fe3O4 nanoparticles have been synthesized using simple and ecofriendly hydrothermal method at supercritical conditions of ethanol. The morphology and crystal structure reveal cubic-like shape with an average size of 63 ± 30 nm and formation of FCC Fe3O4 phase structure. The magnetic properties exhibit superparamagnetic-like behavior at room temperature with saturation magnetization (Ms) of 108 emu/g and coercivity (HC) close to 0 Oe. The temperature dependence on magnetization measurements has confirmed the superparamagnetic behavior with blocking temperature TB of 320 K at the therapeutic temperature range of hyperthermia therapy at 42–47 °C. Feasibility for magnetic hyperthermia has been tested under applied AC magnetic field and frequency ranges from 100 to 500 Oe and 147 to 304 kHz, respectively. The findings confirm that Fe3O4 nanoparticles are feasible for magnetic hyperthermia treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abdeen M, Sabry S, Ghozlan H, El-Gendy AA, Carpenter EE (2016) Microbial-Physical Synthesis of Fe and Fe O Magnetic Nanoparticles Using YESM1 and Supercritical Condition of Ethanol. J Nanomater 2016:1–7

    Article  Google Scholar 

  • Arias LS, Pessan JP, Vieira APM et al (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(46):1–32

    Google Scholar 

  • El-Gendy AA, Ibrahim EMM, Khavrus VO et al (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828

    Article  CAS  Google Scholar 

  • El-Gendy AA, Khavrus VO, Hampel S et al (2010) Morphology, structural control, and magnetic properties of carbon-coated nanoscaled NiRu alloys. J Phys Chem C 114:10745–10749

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Lam UT, Mammucari R, Suzuki K, Foster NR (2008) Processing of iron oxide nanoparticles by supercritical fluids. Ind Eng Chem Res 47(3):599–614

    Article  CAS  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23

    Article  CAS  Google Scholar 

  • Li Z, Godsell JF, O’Byrne JP, Petkov N, Morris MA, Roy S, Holmes JD (2010) Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite. J Am Chem Soc 132(36):12540–12541

    Article  CAS  Google Scholar 

  • Liu W-T (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 2996(102):1–7

    Article  Google Scholar 

  • Lodhia J, Mandarano G, Ferris N, Eu P et al (2010) Development and use of iron oxide nanoparticles (part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Intervent J 6:1–11

    Google Scholar 

  • Meneses-Brassea BP, Borrego EA, Blazer DS, Sanad MF, Pourmiri S, Gutierrez Denisse A., Varela-Ramirez Armando, Hadjipanayis George C., El-Gendy Ahmed A. (2020) Ni-Cu Nanoparticles and Their Feasibility for Magnetic Hyperthermia. Nanomaterials 10:1988

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Qu F, Holloway JL, Esterhai JL et al (2017) Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair. Nat Commun 8:1780 (1-11)

    Article  Google Scholar 

  • Salem NFA, Abouelkheir SS, Yousif AM, Meneses-Brassea BP, Sabry SA, Ghozlan HA, El-Gendy AA (2020) Large Scale Production of Superparamagnetic Iron Oxide Nanoparticles by the Haloarchaeon Halobiforma sp. N1 and Their Potential in Localized Hyperthermia Cancer Therapy. Nanotechnology. https://doi.org/10.1088/1361-6528/abc851

  • Sattler K (2010) Handbook of nanophysics, volume III: nanoparticles and quantum dots, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Silva AKA, Espinosa A, Kolosnjaj-Tabi J, Wilhelm C, Gazeau F (2016) Medical applications of Iron oxide nanoparticles. In: Faivre D (ed) Iron oxides: from nature to applications. Wiley-VCH, Germany, pp 425–472

    Chapter  Google Scholar 

  • Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15:185–191

    Article  CAS  Google Scholar 

  • Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, Wittenberg J, Ferrucci JT (1988) Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168:297–301

    Article  CAS  Google Scholar 

  • Veriansyah B, Kim JD, Min BK, Kim J (2010) Continuous synthesis of magnetite nanoparticles in supercritical methanol. Mater Lett 64(20):2197–2200

    Article  CAS  Google Scholar 

  • Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G, Li Y (2017) Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 127:25–35

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors acknowledge the use of UTEP facility and the support from UTEP-startup and Rising-Star funds of AAE.

Funding

This study was funded by UTEP-startup and Rising-Star funds of AAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. El-Gendy.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology Convergence in Africa

Guest Editors: Mamadou Diallo, Abdessattar Abdelkefi, and Bhekie Mamba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meneses-Brassea, B.P., Cyr, C.M., Martinez, I. et al. Facile synthesis of superparamagnetic Fe3O4 nanoparticles at therapeutic temperature range for magnetic hyperthermia therapy. J Nanopart Res 22, 348 (2020). https://doi.org/10.1007/s11051-020-05081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05081-5

Keywords

Navigation