Skip to main content
Log in

Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We demonstrate a facile synthesis of ultrafine SnO2 nanoparticles within graphene nanosheets (GNSs) via thermal decomposition of tin-octoate, in which tin-octoate is firstly blended with GNSs followed by annealing in air at a low temperature (350 °C) and a short time (1 h). As anode for lithium ion batteries, the SnO2/GNSs displays superior cycle and rate performance, delivering reversible capacities of 803 and 682 mA h/g at current densities of 200 and 500 mA/g after 120 cycles, respectively, much higher than that of pure SnO2 and GNSs counterparts (143 and 310 mA h/g at 500 mA/g after 120 cycles, respectively). The enhanced electrochemical performance is attributed to the ultrafine SnO2 nanoparticle size and introduction of GNSs. GNSs prevent the aggregation of the ultrafine SnO2 nanoparticles, which alleviate the stress and also provide more electrochemically active sites for lithium insertion and extraction. Moreover, GNSs with large specific surface area (~363 m2/g) act as a good electrical conductor which greatly improves the electrode conductivity and also an excellent buffer matrix to tolerate the severe volume changes originated from the Li-Sn alloying-dealloying. This work provides a straight-forward synthetic approach for the design of novel composite anode materials with superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong MJ, O’Dwyer C, Macklin WJ, Holmes JD (2014) Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res 7:1–62. doi:10.1007/s12274-013-0375-x

    Article  Google Scholar 

  • Cai D et al (2014) A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J Mater Chem A 2:13990. doi:10.1039/c4ta01850h

    Article  Google Scholar 

  • Cai D et al (2015) Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 159:46–51. doi:10.1016/j.electacta.2015.01.090

    Article  Google Scholar 

  • Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35. doi:10.1038/nnano.2007.411

    Article  Google Scholar 

  • Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893. doi:10.1002/smll.201202601

    Article  Google Scholar 

  • Demir-Cakan R, Hu Y-S, Antonietti M, Maier J, Titirici M-M (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229. doi:10.1021/cm7031288

    Article  Google Scholar 

  • Deng D, Lee JY (2008) Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem Mater 20:1841–1846. doi:10.1021/cm7030575

    Article  Google Scholar 

  • Ding S, Luan D, Boey FY, Chen JS, Lou XW (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157. doi:10.1039/c1cc11968k

    Article  Google Scholar 

  • Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage. Mater Sci 276:1395–1397. doi:10.1126/science.276.5317.1395

    Google Scholar 

  • Jin Y-H, Min K-M, Seo S-D, Shim H-W, Kim D-W (2011) Enhanced Li storage capacity in 3 nm diameter SnO2 nanocrystals firmly anchored on multiwalled carbon nanotubes. J Phys Chem C 115:22062–22067. doi:10.1021/jp208021w

    Article  Google Scholar 

  • Larese C, Campos-Martin JM, Fierro JLG (2000) Alumina- and zirconia−alumina-loaded tin−platinum. Surface features and performance for butane dehydrogenation. Langmuir 16:10294–10300. doi:10.1021/la0009644

    Article  Google Scholar 

  • Li Y, Lu X, Wang H, Xie C, Yang G, Niu C (2015) Growth of ultrafine SnO2 nanoparticles within multiwall carbon nanotube networks: non-solution synthesis and excellent electrochemical properties as anodes for lithium ion batteries. Electrochim Acta 178:778–785. doi:10.1016/j.electacta.2015.08.078

    Article  Google Scholar 

  • Liu J, Li W, Manthiram A (2010) Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem Commun 46:1437–1439. doi:10.1039/b918501a

    Article  Google Scholar 

  • Liu X-M, Huang ZD, Oh SW, Zhang B, Ma P-C, Yuen MMF, Kim J-K (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144. doi:10.1016/j.compscitech.2011.11.019

    Article  Google Scholar 

  • Liu X, Cheng J, Li W, Zhong X, Yang Z, Gu L, Yu Y (2014) Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale 6:7817–7822. doi:10.1039/c4nr01493f

    Article  Google Scholar 

  • Liu L, An M, Yang P, Zhang J (2015) Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci Rep 5:9055. doi:10.1038/srep09055

    Article  Google Scholar 

  • Lou XW, Wang Y, Yuan C, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329. doi:10.1002/adma.200600733

    Article  Google Scholar 

  • Lu X, Wang H, Wang Z, Jiang Y, Cao D, Yang G (2016) Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J Alloys Compd 680:109–115. doi:10.1016/j.jallcom.2016.04.128

    Article  Google Scholar 

  • Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Nanostructured materials for energy storage International. J Inorg Mater 3:191–200. doi:10.1016/s1466-6049(01)00026-5

    Article  Google Scholar 

  • Park S-K et al (2012) A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries. J Mater Chem 22:2520–2525. doi:10.1039/c1jm14199f

    Article  Google Scholar 

  • Potts JR, Murali S, Zhu Y, Zhao X, Ruoff RS (2011) Microwave-exfoliated graphite oxide/polycarbonate composites. Macromolecules 44:6488–6495. doi:10.1021/ma2007317

    Article  Google Scholar 

  • Sangjin H, Byungchul J, Taeahn K, Oh SM, Taeghwan H (2005) Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv Funct Mater 15:1845–1850. doi:10.1002/adfm.200500243

    Article  Google Scholar 

  • Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282–286. doi:10.1038/nature04969

    Article  Google Scholar 

  • Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  • Wang H, Rogach AL (2014) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133. doi:10.1021/cm4018248

    Article  Google Scholar 

  • Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649. doi:10.1002/adma.200501883

    Article  Google Scholar 

  • Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ (2010) Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J Am Chem Soc 132:46–47. doi:10.1021/ja909321d

    Article  Google Scholar 

  • Wang Z, Luan D, Boey FYC, Lou XW (2011) Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J Am Chem Soc 133:4738–4741. doi:10.1021/ja2004329

    Article  Google Scholar 

  • Wang H et al (2012) Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: fluoride-mediated formation of solid and hollow structures. J Mater Chem 22:2140–2148. doi:10.1039/c1jm14839g

    Article  Google Scholar 

  • Wang H et al (2013a) Hierarchical assembly of Ti(IV)/Sn(II) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties. Nanoscale 5:9101–9109. doi:10.1039/c3nr02456c

    Article  Google Scholar 

  • Wang X, Li Z, Yin L (2013b) Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance. CrystEngComm 15:7589–7597. doi:10.1039/c3ce41256c

    Article  Google Scholar 

  • Wang H, Kalytchuk S, Yang H, He L, Hu C, Teoh WY, Rogach AL (2014a) Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(ii) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale 6:6084–6091. doi:10.1039/C4NR00672K

    Article  Google Scholar 

  • Wang H et al (2014b) Synthesis and characterization of tin titanate nanotubes: precursors for nanoparticulate Sn-doped TiO2 anodes with synergistically improved electrochemical performance. ChemElectroChem 1:1563–1569. doi:10.1002/celc.201402188

    Article  Google Scholar 

  • Wang H et al (2016) Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale 8:7595–7603. doi:10.1039/C5NR09305H

    Article  Google Scholar 

  • Xu C, Sun J, Gao L (2012) Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem 22:975–979. doi:10.1039/c1jm14099j

    Article  Google Scholar 

  • Yang Y, Ji X, Lu F, Chen Q, Banks CE (2013) The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Phys Chem Chem Phys 15:15098–15105. doi:10.1039/c3cp52808a

    Article  Google Scholar 

  • Yin XM, Li CC, Zhang M, Hao QY, Liu S, Chen LB, Wang TH (2010) One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J Phys Chem C 114:8084–8088. doi:10.1021/jp100224x

    Article  Google Scholar 

  • Zhai C, Du N, Zhang H, Yu J, Yang D (2011) Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. ACS Appl Mater Interfaces 3:4067–4074. doi:10.1021/am200933m

    Article  Google Scholar 

  • Zhang M et al (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21:1673–1676. doi:10.1039/c0jm03410j

    Article  Google Scholar 

  • Zhang L, Zhang G, Wu HB, Yu L, Lou XW (2013) Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv Mater 25:2589–2593. doi:10.1002/adma.201300105

    Article  Google Scholar 

  • Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157. doi:10.1002/adma.201300071

    Article  Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122. doi:10.1016/j.carbon.2010.02.001

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 51402232 and 51521065), the Fundamental Research Funds for the Central Universities in China, the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2015JQ5131) and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, Grant No. 2016-skllmd-04). The authors also thank Ms. Yazhu Dai and Mr. Chuansheng Ma for their help with SEM/TEM measurements, carried out at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingjie Meng or Hongkang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xie, S., Cao, D. et al. Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries. J Nanopart Res 18, 280 (2016). https://doi.org/10.1007/s11051-016-3590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3590-z

Keywords

Navigation