Skip to main content
Log in

Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original tri-octylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alivisatos AP (1996a) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  Google Scholar 

  • Alivisatos AP (1996b) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933

    Article  Google Scholar 

  • Alivisatos AP (2001) Less is more in medicine. Sci Am 285:66–73

    Article  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. doi:10.1038/nbt927

    Article  Google Scholar 

  • Banerjee A, Grazon C, Nadal B, Pons T, Krishnan Y, Dubertret B (2015) Fast, efficient, and stable conjugation of multiple DNA strands on colloidal quantum dots. Bioconj chem 26:1582–1589. doi:10.1021/acs.bioconjchem.5b00221

    Article  Google Scholar 

  • Bao J, Bawendi MG (2015) A colloidal quantum dot spectrometer. Nature 523:67–70. doi:10.1038/nature14576

    Article  Google Scholar 

  • Bhana S, Wang Y, Huang X (2015) Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine 10:1973–1990. doi:10.2217/nnm.15.32

    Article  Google Scholar 

  • Cao Y, Shi S, Wang L, Yao J, Yao T (2014) Ultrasensitive fluorescence detection of heparin based on quantum dots and a functional ruthenium polypyridyl complex. Biosens Bioelectron 55:174–179. doi:10.1016/j.bios.2013.12.009

    Article  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  Google Scholar 

  • Chen N et al (2015) Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J Colloid Interface Sci 457:27–34. doi:10.1016/j.jcis.2015.06.046

    Article  Google Scholar 

  • Cho SH (2015) WE-G-303-00: nanotechnology for imaging and therapy. Med Phys 42:3693. doi:10.1118/1.4926080

    Google Scholar 

  • Crimmins MT, King BW (1996) An efficient asymmetric approach to carbocyclic nucleosides: asymmetric synthesis of 1592U89, a potent inhibitor of HIV reverse transcriptase. J Org Chem 61:4192–4193

    Article  Google Scholar 

  • Dabbousi BD et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J Phys Chem B 101:9463–9475

    Article  Google Scholar 

  • Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem Mater 8:173–180

    Article  Google Scholar 

  • Dawson K, O’Riordan A (2014) Electroanalysis at the nanoscale. Annu Rev Anal Chem 7:163–181. doi:10.1146/annurev-anchem-071213-020133

    Article  Google Scholar 

  • Dias EI, Nguyen ST, Grubbs RH (1997) Well-defined ruthenium olefin metathesis catalysts:mechanism and activity. J Am Chem Soc 119:3887–3897

    Article  Google Scholar 

  • Diaz Fernandez YA et al (2014) The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices. Nanoscale 6:14605–14616. doi:10.1039/c4nr03717k

    Article  Google Scholar 

  • Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69. doi:10.1038/35051047

    Article  Google Scholar 

  • Ekimov AI et al (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B 10:100–107

    Article  Google Scholar 

  • Fan XZ, Naves L, Siwak NP, Brown A, Culver J, Ghodssi R (2015a) Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology 26:205501. doi:10.1088/0957-4484/26/20/205501

    Article  Google Scholar 

  • Fan Y, Liu H, Han R, Huang L, Shi H, Sha Y, Jiang Y (2015b) Extremely high brightness from polymer-encapsulated quantum dots for two-photon cellular and deep-tissue imaging. Sci Rep 5:9908. doi:10.1038/srep09908

    Article  Google Scholar 

  • Feugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL (2015) Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnol 13:38. doi:10.1186/s12951-015-0097-1

    Article  Google Scholar 

  • Fuhrer MS et al (2000) Crossed nanotube junctions. Science 288:494–497

    Article  Google Scholar 

  • Ganesh N et al (2007) Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat Nanotechnol 2:515–520. doi:10.1038/nnano.2007.216

    Article  Google Scholar 

  • Grubbs RH (1994) The development of functional group tolerant ROMP catalysts. Pure Appl Chem A31:1829–1833

    Google Scholar 

  • Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620. doi:10.1038/415617a

    Article  Google Scholar 

  • Guyot-Sionnest P, Hines MA (1998) Intraband transitions in semiconductor nanocrystals. Appl Phys Lett 72:686–688

    Article  Google Scholar 

  • Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem 1996:7212–7219

    Article  Google Scholar 

  • Hasan M, Bethel D, Brust M (2002) The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold: (1)H NMR spectroscopic evidence from solutions of gold clusters. J Am Chem Soc 124:1132–1136

    Article  Google Scholar 

  • Heath JR, Shiang J (1998) Covalency in semiconductor quantum dots. J Chem Soc Rev 27:65–71

    Article  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescent ZnS–capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  Google Scholar 

  • Hou T, Zhang P, Zhou X, Cao X, Zhao Y (2010) Synthesis of well-defined polymers grafted onto fumed silica by chain exchange reaction and highly pure block copolymers thereby. Chem Commun 46:7397–7399. doi:10.1039/c0cc02135k

    Article  Google Scholar 

  • Islam MR, Bach LG, Vo TS, Lee DC, Lim KT (2014) Controlled synthesis, optical properties and cytotoxicity studies of CdSe-poly(lactic acid) multifunctional nanocomposites by ring-opening polymerization. J Nanosci Nanotechnol 14:6251–6255

    Article  Google Scholar 

  • Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic Press, San Diego

    Google Scholar 

  • Jiang L, Chen X, Lu N, Chi L (2014) Spatially confined assembly of nanoparticles. Acc Chem Res 47:3009–3017. doi:10.1021/ar500196r

    Article  Google Scholar 

  • Katari JEB, Colvin VL, Alivisatos AP (1994) X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J Phys Chem 98:4109–4117

    Article  Google Scholar 

  • Klimov VI, McBranch DW, Leatherdale CA, Bawendi MG (1999) Electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B 60:13740–13749

    Article  Google Scholar 

  • Labelle AJ, Thon SM, Kim JY, Lan X, Zhitomirsky D, Kemp KW, Sargent EH (2015) Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics. ACS Nano 9:5447–5453. doi:10.1021/acsnano.5b01296

    Article  Google Scholar 

  • Lalatsa A, Serrano Lopez DR (2015) Editorial: engineering nanomedicines into safe and effective therapeutics. Curr Top Med Chem 15:2253

    Article  Google Scholar 

  • Lei Y, Wang T, Mitchell JW, Chow LC (2014) Immobilization of xanthate agent on titanium dioxide and surface initiated RAFT polymerization. J Basic Clin Med 3:1–3

    Article  Google Scholar 

  • Levicky R, Koneripalli N, Tirrell M (1998) Concentration profiles in densely tethered polymer brushes. Macromolecules 31:3731–3734

    Article  Google Scholar 

  • Lynn DM, Kanaoka S, Grubbs RH (1996) Living ring-opening metathesis polymerization in aqueous media catalyzed by well-defined ruthenium carbene complexes. J Am Chem Soc 118:784–790

    Article  Google Scholar 

  • Manna L, Scher E, Alivisatos PA (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122:12700

    Article  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  • Nasilowski M, Spinicelli P, Patriarche G, Dubertret B (2015) Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett 15:3953–3958. doi:10.1021/acs.nanolett.5b00838

    Article  Google Scholar 

  • Nguyen ST, Johnson IK, Grubbs RH, Zeller JW (1992) Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media. J Am Chem Soc 114:3974–3975

    Article  Google Scholar 

  • Nguyen ST, Grubbs RH, Zeller JW (1993) Synthesis and activities of new single-component, ruthenium-based olefin metathesis catalysts. J Am Chem Soc 115:9858–9859

    Article  Google Scholar 

  • Nirmal M, Brus LE (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414

    Article  Google Scholar 

  • Pancove JI (2010) Optical processes in semiconductors. Dover books on physics. Dover Publications, New York

    Google Scholar 

  • Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessability. J Am Chem Soc 119:7019–7029

    Article  Google Scholar 

  • Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344

    Article  Google Scholar 

  • Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich AV, Alivisatos PA (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  Google Scholar 

  • Prucker O, Ruhe J (1998a) Mechanism of radical chain polymerizations initiated by Azo compounds covalently bound to the surface of spherical particles. Macromolecules 31:602–613

    Article  Google Scholar 

  • Prucker O, Ruhe J (1998b) Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31:592–601

    Article  Google Scholar 

  • Samanta A, Banerjee S, Liu Y (2015) DNA nanotechnology for nanophotonic applications. Nanoscale 7:2210–2220. doi:10.1039/c4nr06283c

    Article  Google Scholar 

  • Schneider M, Fetsch C, Amin I, Jordan R, Luxenhofer R (2013) Polypeptoid brushes by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides. Langmuir 29:6983–6988. doi:10.1021/la4009174

    Article  Google Scholar 

  • Schwab P, Grubbs RH, Ziller JW (1996) Synthesis and application of RuCl2(= CHR’)(PR3)2: the influence of the alkylidene moiety on metathesis activity. J Am Chem Soc 118:100–110

    Article  Google Scholar 

  • Shipway AN, Willner I (2001) Nanoparticles as structural and functional units in surface-confined architectures. Chem Commun 20:2035–2045

    Article  Google Scholar 

  • Skaff H, Ilker MF, Coughlin EB, Emrick T (2002) Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. J Am Chem Soc 124:5729–5733

    Article  Google Scholar 

  • Sun D, Tian Y, Zhang Y, Xu Z, Sfeir MY, Cotlet M, Gang O (2015) Light-harvesting nanoparticle core-shell clusters with controllable optical output. ACS Nano 9:5657–5665. doi:10.1021/nn507331z

    Article  Google Scholar 

  • Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphine mixture. Nano Lett 1:207–211

    Article  Google Scholar 

  • Tenenbaum E, Ben-Dov N, Segal E (2015) Tethered lipid bilayers within porous Si nanostructures: a platform for (optical) real-time monitoring of membrane-associated processes. Langmuir 31:5244–5251. doi:10.1021/acs.langmuir.5b00935

    Article  Google Scholar 

  • Tian YC, Newton T, Kotov NA, Guldi DM, Fendler JN (1996) Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J Phys Chem 100:8927–8939

    Article  Google Scholar 

  • Walba DM, Keller P, Shao R, Clark NA, Hillmyer M, Grubbs RH (1996) Main-chain ferroelectric liquid crystal oligomers by acyclic diene metathesis polymerization. J Am Chem Soc 118:2740–2741

    Article  Google Scholar 

  • Wang T, Chow LC, Frukhtbeyn SA, Ting AH, Dong Q, Yang M, Mitchell JW (2011) Improve the strength of PLA/HA composite through the use of surface initiated polymerization and phosphonic acid coupling agent. J Res Natl Inst Stand Technol 116:785–796

    Article  Google Scholar 

  • Wang W et al (2015) Photoligation of an amphiphilic polymer with mixed coordination provides compact and reactive quantum dots. J Am Chem Soc 137:5438–5451. doi:10.1021/jacs.5b00671

    Article  Google Scholar 

  • Weller H (1993) Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed Engl 32:41–53

    Article  Google Scholar 

  • Wijesena RN, Tissera N, Kannangara YY, Lin Y, Amaratunga GA, de Silva KM (2015) A method for top down preparation of chitosan nanoparticles and nanofibers. Carbohydr Polym 117:731–738. doi:10.1016/j.carbpol.2014.10.055

    Article  Google Scholar 

  • Wu Z, Nguyen ST, Grubbs RH, Zeller JW (1995) Reactions of ruthenium carbenes of the type (PPh3)2(X)2Ru = CH-CH = CPh2(X = Cl and CF3COO) with strained acyclic olefins and functionalized olefins. J Am Chem Soc 117:5503–5511

    Article  Google Scholar 

  • Yenice Z, Schon S, Bildirir H, Genzer J, von Klitzing R (2015) Thermoresponsive PDMAEMA brushes: effect of gold nanoparticle deposition. J Phys Chem B 119:10348–10358. doi:10.1021/acs.jpcb.5b04757

    Article  Google Scholar 

  • Zhang Y, Wang TH (2012) Quantum dot enabled molecular sensing and diagnostics. Theranostics 2:631–654. doi:10.7150/thno.4308

    Article  Google Scholar 

  • Zhang L, Zhao D (2014) Applications of nanoparticles for brain cancer imaging and therapy. J Biomed Nanotechnol 10:1713–1731

    Article  Google Scholar 

  • Zhao S, Liu H (2015) Bottom-up nanofabrication through catalyzed vapor phase HF etching of SiO2. Nanotechnology 26:015301. doi:10.1088/0957-4484/26/1/015301

    Article  Google Scholar 

Download references

Acknowledgments

MRH was supported by the US NIH grant R01AI050875.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatma Vatansever or Michael R. Hamblin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatansever, F., Hamblin, M.R. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots. J Nanopart Res 18, 302 (2016). https://doi.org/10.1007/s11051-016-3328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3328-y

Keywords

Navigation