Skip to main content
Log in

Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achmann S, Hagen G, Kita J, Malkowsky IM, Kiener C, Moos R (2009) Metal–organic frameworks for sensing applications in the gas phase. Sensors 9:1574–1589

    Google Scholar 

  • Alaerts L, Séguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos DE (2006) Probing the Lewis acidity and catalytic activity of the metal–organic framework [Cu3(btc)2](BTC = benzene-1,3,5-tricarboxylate). Chem Eur J 12:7353–7363

    Google Scholar 

  • Allendorf M, Bauer C, Bhakta R, Houk R (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352

    Google Scholar 

  • An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal–organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223

    Google Scholar 

  • Barrett SM, Wang C, Lin W (2012) Oxygen sensing via phosphorescence quenching of doped metal–organic frameworks. J Mater Chem 22:10329–10334

    Google Scholar 

  • Cadiau A, Brites CDS, Costa PMFJ, Ferreira RAS, Rocha J, Carlos LD (2013) Ratiometric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 7:7213–7218

    Google Scholar 

  • Carne A, Carbonell C, Imaz I, Maspoch D (2011) Nanoscale metal–organic materials. Chem Soc Rev 40:291–305

    Google Scholar 

  • Chen B, Yang Y, Zapata F, Lin G, Qian G, Lobkovsky EB (2007) Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv Mater 19:1693–1696

    Google Scholar 

  • Chen B, Wang L, Zapata F, Qian G, Lobkovsky EB (2008) A luminescent microporous metal–organic framework for the recognition and sensing of anions. J Am Chem Soc 130:6718–6719

    Google Scholar 

  • Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, Qian G (2009) A luminescent metal–organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed 48:500–503

    Google Scholar 

  • Chen B, Xiang S, Qian G (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Google Scholar 

  • Choi JR, Tachikawa T, Fujitsuka M, Majima T (2010) Europium-based metal–organic framework as a photocatalyst for the one-electron oxidation of organic compounds. Langmuir 26:10437–10443

    Google Scholar 

  • Clausen HF, Poulsen RD, Bond AD, Chevallier M-AS, Iversen BB (2005) Solvothermal synthesis of new metal organic framework structures in the zinc–terephthalic acid–dimethyl formamide system. J Solid State Chem 178:3342–3351

    Google Scholar 

  • Corma A, Garcia H, Llabrés i Xamena F (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Google Scholar 

  • Cravillon J, Münzer S, Lohmeier S-J, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21:1410–1412

    Google Scholar 

  • Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M (2011) Controlling zeolitic imidazolate framework nano-and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem Mater 23:2130–2141

    Google Scholar 

  • Cui Y, Yue Y, Qian G, Chen B (2011) Luminescent functional metal–organic frameworks. Chem Rev 112:1126–1162

    Google Scholar 

  • Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B (2012) A luminescent mixed-lanthanide metal–organic framework thermometer. J Am Chem Soc 134:3979–3982

    Google Scholar 

  • Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal–organic frameworks. Science 327:846–850

    Google Scholar 

  • Ding S-B, Wang W, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2011) Surfactant-assisted synthesis of lanthanide metal–organic framework nanorods and their fluorescence sensing of nitroaromatic explosives. Mater Lett 65:1385–1387

    Google Scholar 

  • Diring S, Furukawa S, Takashima Y, Tsuruoka T, Kitagawa S (2010) Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem Mater 22:4531–4538

    Google Scholar 

  • D’Vries RF, Iglesias M, Snejko N, Alvarez-Garcia S, Gutiérrez-Puebla E, Monge MA (2012) Mixed lanthanide succinate–sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J Mater Chem 22:1191

    Google Scholar 

  • Dwars T, Paetzold E, Oehme G (2005) Reactions in micellar systems. Angew Chem Int Ed 44:7174–7199

    Google Scholar 

  • Dybtsev DN, Nuzhdin AL, Chun H, Bryliakov KP, Talsi EP, Fedin VP, Kim K (2006) A homochiral metal–organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angew Chem Int Ed 45:916–920

    Google Scholar 

  • Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948

    Google Scholar 

  • Farrusseng D, Aguado S, Pinel C (2009) Metal–organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513

    Google Scholar 

  • Ge J-P, Li Y-D (2003) Ultrasonic synthesis of nanocrystals of metal selenides and tellurides. J Mater Chem 13:911–915

    Google Scholar 

  • Guo H, Zhu Y, Qiu S, Lercher JA, Zhang H (2010) Coordination Modulation induced synthesis of nanoscale Eu1−xTbx-metal–organic frameworks for luminescent thin films. Adv Mater 22:4190–4192

    Google Scholar 

  • Guo H, Zhu Y, Wang S, Su S, Zhou L, Zhang H (2012) Combining coordination modulation with acid–base adjustment for the control over size of metal–organic frameworks. Chem Mater 24:444–450

    Google Scholar 

  • Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem 118:6120–6124

    Google Scholar 

  • Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous metal–organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780

    Google Scholar 

  • Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C (2009) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Google Scholar 

  • Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2011) Metal–organic frameworks in biomedicine. Chem Rev 112:1232–1268

    Google Scholar 

  • Horike S, Dinca M, Tamaki K, Long JR (2008) Size-selective Lewis acid catalysis in a microporous metal–organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 130:5854–5855

    Google Scholar 

  • Hu JS, Zhong LS, Song WG, Wan LJ (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20:2977–2982

    Google Scholar 

  • Hu S-M, Niu H-L, Qiu L-G, Yuan Y-P, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2012) Facile synthesis of highly luminescent nanowires of a terbium-based metal–organic framework by an ultrasonic-assisted method and their application as a luminescent probe for selective sensing of organoamines. Inorg Chem Commun 17:147–150

    Google Scholar 

  • Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A 70:365–376

    Google Scholar 

  • Jiang H-L, Tatsu Y, Lu Z-H, Xu Q (2010) Non-, micro-, and mesoporous metal–organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. J Am Chem Soc 132:5586–5587

    Google Scholar 

  • Juan-Alcañiz J, Gascon J, Kapteijn F (2012) Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J Mater Chem 22:10102

    Google Scholar 

  • Jung S, Cho W, Lee HJ, Oh M (2009) Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew Chem Int Ed 48:1459–1462

    Google Scholar 

  • Keskin S, Kızılel S (2011) Biomedical applications of metal organic frameworks. Ind Eng Chem Res 50:1799–1812

    Google Scholar 

  • Kim J, Yang S-T, Choi SB, Sim J, Kim J, Ahn W-S (2011) Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21:3070–3076

    Google Scholar 

  • Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2011) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Google Scholar 

  • Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou H-C (2009) Potential applications of metal–organic frameworks. Coord Chem Rev 253:3042–3066

    Google Scholar 

  • Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Google Scholar 

  • Lee CY, Farha OK, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT (2011) Light-harvesting metal–organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J Am Chem Soc 133:15858–15861

    Google Scholar 

  • Li Y, Yang RT (2007) Gas adsorption and storage in metal–organic framework MOF-177. Langmuir 23:12937–12944

    Google Scholar 

  • Li H, Eddaoudi M, Groy TL, Yaghi O (1998) Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn (BDC)(BDC = 1,4-benzenedicarboxylate). J Am Chem Soc 120:8571–8572

    Google Scholar 

  • Li C, Yang J, Yang P, Lian H, Lin J (2008a) Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem Mater 20:4317–4326

    Google Scholar 

  • Li Z-Q, Qiu L-G, Wang W, Xu T, Wu Y, Jiang X (2008b) Fabrication of nanosheets of a fluorescent metal–organic framework [Zn (BDC)(H2O)]n (BDC = 1,4-benzenedicarboxylate): ultrasonic synthesis and sensing of ethylamine. Inorg Chem Commun 11:1375–1377

    Google Scholar 

  • Li Z-Q, Qiu L-G, Xu T, Wu Y, Wang W, Wu Z-Y, Jiang X (2009) Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater Lett 63:78–80

    Google Scholar 

  • Lin W, Rieter WJ, Taylor KM (2009) Modular synthesis of functional nanoscale coordination polymers. Angew Chem Int Ed 48(4):650–658

    Google Scholar 

  • Liu K, You H, Jia G, Zheng Y, Song Y, Yang M, Huang Y, Zhang H (2009) Coordination-induced formation of one-dimensional nanostructures of europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation. Cryst Growth Des 9:3519–3524

    Google Scholar 

  • Liu K, You H, Zheng Y, Jia G, Song Y, Huang Y, Yang M, Jia J, Guo N, Zhang H (2010a) Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties. J Mater Chem 20:3272–3279

    Google Scholar 

  • Liu K, Zheng Y, Jia G, Yang M, Song Y, Guo N, You H (2010b) Nano/micro-scaled La(1,3,5-BTC)(H2O)6 coordination polymer: facile morphology-controlled fabrication and color-tunable photoluminescence properties by co-doping Eu3+, Tb3+. J Solid State Chem 183:2309–2316

    Google Scholar 

  • Liu D, Huxford RC, Lin W (2011) Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew Chem Int Ed Engl 123:3780–3784

    Google Scholar 

  • Liu J-M, L-p Lin, Wang X-X, Lin S-Q, Cai W-L, Zhang L-H, Zheng Z-Y (2012) Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137:2637–2642

    Google Scholar 

  • Liu G-l, Qin Y-j, Jing L, Wei G-y, Li H (2013) Two novel MOF-74 analogs exhibiting unique luminescent selectivity. Chem Commun (Camb) 49:1699–1701

    Google Scholar 

  • Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L, Wang X (2012) Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Nat Chem 48:11656–11658

    Google Scholar 

  • Lu G, Hupp JT (2010) Metal–organic frameworks as sensors: a ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833

    Google Scholar 

  • Lu Y, Yan B (2014a) Luminescent lanthanide barcodes based on postsynthetic modified nanoscale metal–organic frameworks. J Mater Chem C 2:7411–7416

    Google Scholar 

  • Lu Y, Yan B (2014b) A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(III complexes. Chem Commun 50:13323–13326

    Google Scholar 

  • Lu W, Qin X, Luo Y, Chang G, Sun X (2011) CdS quantum dots as a fluorescent sensing platform for nucleic acid detection. Microchim Acta 175:355–359

    Google Scholar 

  • Lu Y, Yan B, Liu J-L (2014) Nanoscale metal–organic frameworks as highly sensitive luminescent sensors for Fe2+ in aqueous solution and living cells. Chem Commun 50:9969–9972

    Google Scholar 

  • Luche J-L, Cintas P (1999) Can sonication modify the regio and stereoselectivities of organic reactions? Adv Sonochem 5:147–174

    Google Scholar 

  • Luz I, Llabrés i Xamena F, Corma A (2010) Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts. J Catal 276:134–140

    Google Scholar 

  • Ma S, Zhou H-C (2010) Gas storage in porous metal–organic frameworks for clean energy applications. Chem Commun 46:44–53

    Google Scholar 

  • Ma R, Chu H, Zhao Y, Wuren Q, Shan M (2010) Synthesis and fluorescence properties of ten lanthanide benzene-1,3,5-tricarboxylate complexes. Spectrochim Acta A 77:419–423

    Google Scholar 

  • Meek ST, Greathouse JA, Allendorf MD (2011) Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267

    Google Scholar 

  • Mulfort KL, Hupp JT (2007) Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J Am Chem Soc 129:9604–9605

    Google Scholar 

  • Murray LJ, Dincă M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38:1294–1314

    Google Scholar 

  • Nishiyabu R, Aime C, Gondo R, Noguchi T, Kimizuka N (2009a) Confining molecules within aqueous coordination nanoparticles by adaptive molecular self-assembly. Angew Chem Int Ed Engl 48:9465–9468

    Google Scholar 

  • Nishiyabu R, Hashimoto N, Cho T, Watanabe K, Yasunaga T, Endo A, Kaneko K, Niidome T, Murata M, Adachi C (2009b) Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J Am Chem Soc 131:2151–2158

    Google Scholar 

  • Nishiyabu R, Aime C, Gondo R, Kaneko K, Kimizuka N (2010) Selective inclusion of anionic quantum dots in coordination network shells of nucleotides and lanthanide ions. Chem Commun (Camb) 46:4333–4335

    Google Scholar 

  • Nune SK, Thallapally PK, Dohnalkova A, Wang C, Liu J, Exarhos GJ (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun 46:4878–4880

    Google Scholar 

  • Oh M, Mirkin CA (2006) Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers. Angew Chem Int Ed Engl 118:5618–5620

    Google Scholar 

  • Perry JL, Martin CR, Stewart JD (2011) Drug-delivery strategies by using template-synthesized nanotubes. Chem Eur J 17:6296–6302

    Google Scholar 

  • Pham M-H, Vuong G-T, Vu A-T, Do T-O (2011) Novel route to size-controlled Fe-MIL-88B-NH2 metal–organic framework nanocrystals. Langmuir 27(24):15261–15267

    Google Scholar 

  • Qiu L-G, Li Z-Q, Wu Y, Wang W, Xu T, Jiang X (2008) Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 31:3642–3644

    Google Scholar 

  • Rieter WJ, Taylor KML, An HY, Lin WL, Lin WB (2006) Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025

    Google Scholar 

  • Rieter WJ, Pott KM, Taylor KM, Lin W (2008) Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 130:11584–11585

    Google Scholar 

  • Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009) Polymer-modified gadolinium metal–organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10:983–993

    Google Scholar 

  • Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann Ch, Evers F, Zacher D, Fischer RA, Wöll Ch (2007) Step-by-step route for the synthesis of metal–organic frameworks. J Am Chem Soc 129:15118–15119

    Google Scholar 

  • Shekhah O, Wang H, Zacher D, Fischer RA, Wöll C (2009) Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-step route. Angew Chem Int Ed 48:5038–5041

    Google Scholar 

  • Suh MP, Park HJ, Prasad TK, Lim D-W (2011) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835

    Google Scholar 

  • Sun C-Y, Liu S-X, Liang D-D, Shao K-Z, Ren Y-H, Su Z-M (2009) Highly stable crystalline catalysts based on a microporous metal–organic framework and polyoxometalates. J Am Chem Soc 131:1883–1888

    Google Scholar 

  • Tan H, Chen Y (2011) Ag(+)-enhanced fluorescence of lanthanide/nucleotide coordination polymers and Ag(+) sensing. Chem Commun (Camb) 47:12373–12375

    Google Scholar 

  • Tan H, Liu B, Chen Y (2012a) Lanthanide coordination polymer nanoparticles for sensing of Mercury (II) by photoinduced electron transfer. ACS Nano 6:10505–10511

    Google Scholar 

  • Tan H, Liu B, Chen Y (2012b) Luminescence nucleotide/Eu3+ coordination polymer based on the inclusion of tetracycline. J Phys Chem C 116:2292–2296

    Google Scholar 

  • Tan H, Ma C, Song Y, Xu F, Chen S, Wang L (2013a) Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens Bioelectron 50:447–452

    Google Scholar 

  • Tan H, Zhang L, Ma C, Song Y, Xu F, Chen S, Wang L (2013b) Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids. ACS Appl Mater Interfaces 5:11791–11796

    Google Scholar 

  • Tan H, Ma C, Chen L, Xu F, Chen S, Wang L (2014) Nanoscaled lanthanide/nucleotide coordination polymer for detection of an anthrax biomarker. Sens Actuators B 190:621–626

    Google Scholar 

  • Taylor KM, Rieter WJ, Lin W (2008) Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. J Am Chem Soc 130:14358–14359

    Google Scholar 

  • Taylor-Pashow KM, Rocca JD, Xie Z, Tran S, Lin W (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Google Scholar 

  • Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S (2009) Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew Chem Int Ed 48:4739–4743

    Google Scholar 

  • Tsuruoka T, Kawasaki H, Nawafune H, Akamatsu K (2011) Controlled self-assembly of metal–organic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures. ACS Appl Mater Interfaces 3(10):3788–3791

    Google Scholar 

  • Turner S, Lebedev OI, Schröder F, Esken D, Fischer RA, Tendeloo GV (2008) Direct imaging of loaded metal–organic framework materials (metal@MOF-5). Chem Mater 20:5622–5627

    Google Scholar 

  • Vilela SM, Ananias D, Fernandes JA, Silva P, Gomes AC, Silva NJ, Rodrigues MO, Tomé JP, Valente AA, Ribeiro-Claro P (2014) Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. J Mater Chem C 2:3311–3327

    Google Scholar 

  • Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2006) Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg Chem 45:6661–6665

    Google Scholar 

  • Wang C, deKrafft KE, Lin W (2012a) Pt nanoparticles@photoactive metal–organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J Am Chem Soc 134:7211–7214

    Google Scholar 

  • Wang Y-P, Wang F, Luo D-F, Zhou L, Wen L-L (2012b) A luminescent nanocrystal metal–organic framework for sensing of nitroaromatic compounds. Inorg Chem Commun 19:43–46

    Google Scholar 

  • Wessels JT, Yamauchi K, Hoffman RM, Wouters FS (2010) Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo. Cytometry 77:667–676

    Google Scholar 

  • Williams DK, Bihari B, Tissue BM, McHale JM (1998) Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+: Y2O3 and comparison to Eu3+: Y2O3 nanocrystals. J Phys Chem B 102:916–920

    Google Scholar 

  • Wu CD, Lin W (2007) Heterogeneous asymmetric catalysis with homochiral metal–organic frameworks: network-structure-dependent catalytic activity. Angew Chem Int Ed 119:1093–1096

    Google Scholar 

  • Wu P, Wang J, He C, Zhang X, Wang Y, Liu T, Duan C (2012) Luminescent metal–organic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells. Adv Funct Mater 22:1698–1703

    Google Scholar 

  • Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B, Wang W (2011) Metal–organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. Angew Chem Int Ed 50:491–494

    Google Scholar 

  • Xiao Y, Cui Y, Zheng Q, Xiang S, Qian G, Chen B (2010) A microporous luminescent metal–organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution. Chem Commun 46(30):5503–5505

    Google Scholar 

  • Xiao J-D, Qiu L-G, Ke F, Yuan Y-P, Xu G-S, Wang Y-M, Jiang X (2013) Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. J Mater Chem A 1:8745–8752

    Google Scholar 

  • Xie Z, Ma L, deKrafft KE, Jin A, Lin W (2009) Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 132:922–923

    Google Scholar 

  • Xu H, Liu F, Cui Y, Chen B, Qian G (2011) A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chem Commun (Camb) 47(11):3153–3155

    Google Scholar 

  • Xu B, Guo H, Wang S, Li Y, Zhang H, Liu C (2012a) Solvothermal synthesis of luminescent Eu(BTC)(H2O)DMF hierarchical architectures. CrystEngComm 14:2914–2919

    Google Scholar 

  • Xu H, Rao X, Gao J, Yu J, Wang Z, Dou Z, Cui Y, Yang Y, Chen B, Qian G (2012b) A luminescent nanoscale metal–organic framework with controllable morphologies for spore detection. Chem Commun 48:7377–7379

    Google Scholar 

  • Yanagishita T, Nishio K, Masuda H (2005) Fabrication of metal nanohole arrays with high aspect ratios using two-step replication of anodic porous alumina. Adv Mater 17:2241–2243

    Google Scholar 

  • Yang X, Tang H, Cao K, Song H, Sheng W, Wu Q (2011) Templated-assisted one-dimensional silica nanotubes: synthesis and applications. J Mater Chem 21:6122–6135

    Google Scholar 

  • Yang W, Feng J, Zhang H (2012) Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J Mater Chem 22:6819

    Google Scholar 

  • Yi X-Y, Fang H-C, Gu Z-G, Zhou Z-Y, Cai Y-P, Tian J, Thallapally PK (2011) Metal–organic frameworks with achiral/monochiral nano-channels. Cryst Growth Des 11:2824–2828

    Google Scholar 

  • Yoon M, Srirambalaji R, Kim K (2011) Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231

    Google Scholar 

  • Yuan Y, Wang W, Qiu L, Peng F, Jiang X, Xie A, Shen Y, Tian X, Zhang L (2011) Surfactant-assisted facile synthesis of fluorescent zinc benzenedicarboxylate metal–organic framework nanorods with enhanced nitrobenzene explosives detection. Mater Chem Phys 131:358–361

    Google Scholar 

  • Zhang X, Ballem MA, Hu ZJ, Bergman P, Uvdal K (2011) Nanoscale light-harvesting metal–organic frameworks. Angew Chem Int Ed Engl 123:5847–5851

    Google Scholar 

  • Zheng B, Zhang D, Peng Y, Huo Q, Liu Y (2012) Syntheses, structures and luminescence properties of two novel lanthanide metal–organic frameworks based on a rigid tetracarboxylate ligand. Inorg Chem Commun 16:70–73

    Google Scholar 

  • Zheng B, Yun R, Bai J, Lu Z, Du L, Li Y (2013) Expanded Porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption. Inorg Chem 52:2823–2829

    Google Scholar 

  • Zhou Y, Yan B (2014) Imparting Tunable and white-light luminescence to a nanosized metal–organic framework by controlled encapsulation of lanthanide cations. Inorg Chem 53:3456–3463

    Google Scholar 

  • Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674

    Google Scholar 

  • Zhou Y, Yan B, Lei F (2014) Postsynthetic lanthanide functionalization of nanosized metal–organic frameworks for highly sensitive ratiometric luminescent thermometry. Chem Commun 50:15235–15238

    Google Scholar 

  • Zhu X, Zheng H, Wei X, Lin Z, Guo L, Qiu B, Chen G (2013) Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276–1278

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21165010, 21465014 and 21465015), Natural Science Foundation of Jiangxi Province (20142BAB203101), the Ministry of Education by the Specialized Research Fund for the Doctoral Program of Higher Education (20133604110002), the Ground Plan of Science and Technology Projects of Jiangxi Educational Committee (KJLD14023), and the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201410, KLFS-KF-201416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Song, Y. & Wang, L. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications. J Nanopart Res 17, 310 (2015). https://doi.org/10.1007/s11051-015-3114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3114-2

Keywords

Navigation