Skip to main content
Log in

Monte Carlo simulation for morphology of nanoparticles and particle size distributions: comparison of the cluster–cluster aggregation model with the sectional method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study presents the validity and ability of an aggregate mean free path cluster–cluster aggregation (AMP-CCA) model, which is a direct Monte Carlo simulation, to predict the aggregate morphology with diameters form about 15–200 nm by comparing the particle size distributions (PSDs) with the results of the previous stochastic approach. The PSDs calculated by the AMP-CCA model with the calculated aggregate as a coalesced spherical particle are in reasonable agreement with the results of the previous stochastic model regardless of the initial number concentration of particles. The shape analysis using two methods, perimeter fractal dimension and the shape categories, has demonstrated that the aggregate structures become complex with increasing the initial number concentration of particles. The AMP-CCA model provides a useful tool to calculate the aggregate morphology and PSD with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abid AD, Heinz N, Tolmachoff ED, Phares DJ, Campbell CS, Wang H (2008) On evolution of particle size distribution functions of incipient soot in premixed ethylene–oxygen–argon flames. Combust Flame 154:775–788. doi:10.1016/j.combustflame.2008.06.009

    Article  Google Scholar 

  • Abid AD, Camacho J, Sheen DA, Wang H (2009) Quantitative measurement of soot particle size distribution in premixed flames—the burner-stabilized stagnation flame approach. Combust Flame 156:1862–1870. doi:10.1016/j.combustflame.2009.05.01

    Article  Google Scholar 

  • Artelt C, Schmid HJ, Peukert W (2003) On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations. J Aerosol Sci 34:511–534. doi:10.1016/S0021-8502(03)00005-3

    Article  Google Scholar 

  • Balthasar M, Frenklach M (2005a) Detailed kinetic modeling of soot aggregate formation in laminar premixed flames. Combust Flame 140:130–145

    Article  Google Scholar 

  • Balthasar M, Frenklach M (2005b) Monte-Carlo simulation of soot particle coagulation and aggregation: the effect of a realistic size distribution. Proc Combust Inst 30:1467–1475

    Article  Google Scholar 

  • Balthasar M, Mauss F, Knobel A, Kraft M (2002) Detailed modeling of soot formation in a partially stirred plug flow reactor. Combust Flame 128:395–409. doi:10.1016/S0010-2180(01)00344-3

    Article  Google Scholar 

  • Bhatt JS, Lindstedt RP (2009) Analysis of the impact of agglomeration and surface chemistry models on soot formation and oxidation. Proc Combust Inst 32:713–720. doi:10.1016/j.proci.2008.06.201

    Article  Google Scholar 

  • Blacha T, Di Domenico M, Gerlinger P, Aigner M (2012) Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot. Combust Flame 159:181–193. doi:10.1016/j.combustflame.2011.07.006

    Article  Google Scholar 

  • Celnik M, Raj A, West R, Patterson R, Kraft M (2008) Aromatic site description of soot particles. Combust Flame 155:161–180. doi:10.1016/j.combustflame.2008.04.011

    Article  Google Scholar 

  • Celnik MS, Sander M, Raj A, West RH, Kraft M (2009) Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate. Proc Combust Inst 32:639–646. doi:10.1016/j.proci.2008.06.062

    Article  Google Scholar 

  • Chen D, Zainuddin Z, Yapp E, Akroyd J, Mosbach S, Kraft M (2013) A fully coupled simulation of PAH and soot growth with a population balance model. Proc Combust Inst 34:1827–1835. doi:10.1016/j.proci.2012.06.089

    Article  Google Scholar 

  • D’Anna A, Kent JH (2008) A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels. Combust Flame 152:573–587. doi:10.1016/j.combustflame.2007.08.003

    Article  Google Scholar 

  • Dworkin SB, Zhang Q, Thomson MJ, Slavinskaya NA, Riedel U (2011) Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust Flame 158:1682–1695. doi:10.1016/j.combustflame.2011.01.013

    Article  Google Scholar 

  • Hayashi S, Hisaeda Y, Asakuma Y, Aoki H, Miura T, Yano H, Sawa Y (1999) Simulation of soot aggregates formed by benzene pyrolysis. Combust Flame 117:851–860. doi:10.1016/S0010-2180(98)00124-2

    Article  Google Scholar 

  • Herd CR, McDonald GC, Hess WM (1992) Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber Chem Technol 65:107–129. doi:10.5254/1.3538594

    Article  Google Scholar 

  • Herd CR, McDonald GC, Smith RE, Hess WM (1993) The use of skeletonization for the shape classification of carbon-black aggregates. Rubber Chem Technol 66:491–509. doi:10.5254/1.3538323

    Article  Google Scholar 

  • Imre AR (2006) Artificial fractal dimension obtained by using perimeter–area relationship on digitalized images. Appl Math Comput 173:443–449. doi:10.1016/j.amc.2005.04.042

    Article  Google Scholar 

  • Ivie JJ, Forney LJ (1988) A numerical model of the synthesis of carbon black by benzene pyrolysis. AIChE J 34:1813–1820. doi:10.1002/aic.690341107

    Article  Google Scholar 

  • Iyer SS, Litzinger TA, Lee S-Y, Santoro RJ (2007) Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame. Combust Flame 149:206–216. doi:10.1016/j.combustflame.2006.11.009

    Article  Google Scholar 

  • Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem Eng Sci 51:1311–1332. doi:10.1016/0009-2509(96)88489-2

    Article  Google Scholar 

  • Lindstedt RP, Waldheim BBO (2013) Modeling of soot particle size distributions in premixed stagnation flow flames. Proc Combust Inst 34:1861–1868. doi:10.1016/j.proci.2012.05.047

    Article  Google Scholar 

  • Manzello SL, Lenhert DB, Yozgatligil A, Donovan MT, Mulholland GW, Zachariah MR, Tsang W (2007) Soot particle size distributions in a well-stirred reactor/plug flow reactor. Proc Combust Inst 31:675–683. doi:10.1016/j.proci.2006.07.013

    Article  Google Scholar 

  • Mitchell P, Frenklach M (1998) Monte Carlo simulation of soot aggregation with simultaneous surface growth—why primary particles appear spherical. Symp (Int) Combust 27:1507–1514

    Article  Google Scholar 

  • Mitchell P, Frenklach M (2003) Particle aggregation with simultaneous surface growth. Phys Rev E 67:061407

    Article  Google Scholar 

  • Morgan N, Kraft M, Balthasar M, Wong D, Frenklach M, Mitchell P (2007) Numerical simulations of soot aggregation in premixed laminar flames. Proc Combust Inst 31:693–700

    Article  Google Scholar 

  • Mulholland GW, Samson RJ, Mountain RD, Ernst MH (1988) Cluster size distribution for free molecular agglomeration. Energy Fuels 2:481–486. doi:10.1021/ef00010a014

    Article  Google Scholar 

  • Nakaso K, Shimada M, Okuyama K, Deppert K (2002) Evaluation of the change in the morphology of gold nanoparticles during sintering. J Aerosol Sci 33:1061–1074. doi:10.1016/S0021-8502(02)00058-7

    Article  Google Scholar 

  • Ono K, Yanaka M, Tanaka S, Saito Y, Aoki H, Fukuda O, Aoki T, Yamaguchi T (2012) Influence of furnace temperature and residence time on configurations of carbon black. Chem Eng J 200–202:541–548. doi:10.1016/j.cej.2012.06.061

    Article  Google Scholar 

  • Ono K, Yanaka M, Saito Y, Aoki H, Fukuda O, Aoki T, Yamaguchi T (2013) Effect of benzene–acetylene compositions on carbon black configurations produced by benzene pyrolysis. Chem Eng J 215–216:128–135. doi:10.1016/j.cej.2012.10.085

    Article  Google Scholar 

  • Ono K, Watanabe A, Dewa K, Matsukawa Y, Saito Y, Matsushita Y, Aoki H, Fukuda O, Aoki T, Yamaguchi T (2014a) Detailed kinetic analysis of the effect of benzene–acetylene composition on the configuration of carbon nanoparticles. Chem Eng J 250:66–75. doi:10.1016/j.cej.2014.03.091

    Article  Google Scholar 

  • Ono K, Watanabe A, Dewa K, Matsukawa Y, Saito Y, Matsushita Y, Aoki H, Fukuda O, Aoki T, Yamaguchi T (2014b) Detailed kinetic analysis of the impact of nucleation behavior and particle size distribution on the configurations of carbon black. J Nanopart Res 16:1–11. doi:10.1007/s11051-014-2519-7

    Google Scholar 

  • Park SH, Rogak SN (2004) A novel fixed-sectional model for the formation and growth of aerosol agglomerates. J Aerosol Sci 35:1385–1404. doi:10.1016/j.jaerosci.2004.05.010

    Article  Google Scholar 

  • Sander M, Patterson RIA, Braumann A, Raj A, Kraft M (2011) Developing the PAH-PP soot particle model using process informatics and uncertainty propagation. Proc Combust Inst 33:675–683. doi:10.1016/j.proci.2010.06.156

    Article  Google Scholar 

  • Seto T, Hirota A, Fujimoto T, Shimada M, Okuyama K (1997) Sintering of polydisperse nanometer-sized agglomerates. Aerosol Sci Technol 27:422–438. doi:10.1080/02786829708965482

    Article  Google Scholar 

  • Shishido F, Hashiguchi H, Matsushita Y, Morozumi Y, Aoki H, Miura T (2007) An investigation of primary particle growth and aggregate formation of soot using a numerical model considering the sintering of primary particles. Kagaku Kogaku Ronbunshu 33:306–314. doi:10.1252/kakoronbunshu.33.306

    Article  Google Scholar 

  • Stöber W (1976) In: Liu BYH (ed) Fine particles. Academic Press, New York, p 354

    Google Scholar 

  • Wang H (2011) Formation of nascent soot and other condensed-phase materials in flames. Proc Combust Inst 33:41–67. doi:10.1016/j.proci.2010.09.009

    Article  Google Scholar 

  • Watanabe R, Shindoh T, Matsushita Y, Aoki H, Miura T, Nishiwaki K, Yamada H, Fukuda O, Yamaguchi T (2010) A numerical investigation of the factors influencing the aggregate shape of carbon black from the furnace process. J Chem Eng Jpn 43:150–157. doi:10.1252/jcej.09we170

    Article  Google Scholar 

  • Xiong Y, Pratsinis SE (1993) Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation. J Aerosol Sci 24:283–300

    Article  Google Scholar 

  • Zhang Q, Guo H, Liu F, Smallwood GJ, Thomson MJ (2009a) Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model. Proc Combust Inst 32:761–768. doi:10.1016/j.proci.2008.06.109

    Article  Google Scholar 

  • Zhang Q, Thomson MJ, Guo H, Liu F, Smallwood GJ (2009b) A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combust Flame 156:697–705. doi:10.1016/j.combustflame.2008.10.022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiminori Ono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, K., Matsukawa, Y., Saito, Y. et al. Monte Carlo simulation for morphology of nanoparticles and particle size distributions: comparison of the cluster–cluster aggregation model with the sectional method. J Nanopart Res 17, 242 (2015). https://doi.org/10.1007/s11051-015-3049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3049-7

Keywords

Navigation