Skip to main content
Log in

IrPd nanoalloys: simulations, from surface segregation to local electronic properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Using semi-empirical modeling, namely tight-binding at different levels of accuracy, the chemical, crystallographic, and electronic structures of bimetallic IrPd nanoparticles are characterized. For the purpose, model cuboctahedral particles containing 561 atoms are considered. Atomistic simulations show that core–shell nanoparticles are highly stable, with a strong surface segregation of Pd, at least for one atomic shell thickness. Within self-consistent tight-binding calculations founded on the density functional theory, an accurate insight is given into the electronic structure of these materials which have a high potential as catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan G, Lannoo M (1976) Vacancies in transition metals: formation energy and formation volume. J Phys Chem Solids 37:699–709. doi:10.1016/0022-3697(76)90008-1

    Article  Google Scholar 

  • Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Le Bouar Y, Braidy N, Loiseau A (2009) Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat Mater 8:940–946. doi:10.1038/nmat2574

    Article  Google Scholar 

  • Bochicchio D, Ferrando R (2013) Morphological instability of core–shell metallic nanoparticles. Phys Rev B 87:165435. doi:10.1103/PhysRevB.87.165435

    Article  Google Scholar 

  • Chado I, Goyhenex C, Bulou H, Bucher JP (2004) Evolution of the morphology of small Co clusters grown on Au(111). Appl Surf Sci 226:178–184. doi:10.1016/j.apsusc.2003.11.019

    Article  Google Scholar 

  • Dai Y, Wang Y, Liu B, Yang Y (2015) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11:268–289. doi:10.1002/smll201400847

    Article  Google Scholar 

  • Davis JBA, Horswell SL, Johnston RL (2014) Global optimization of 8–10 atoms palladium–iridium nanoalloys at the DFT level. J Phys Chem A 118(1):208–214. doi:10.1021/jp408519z

    Article  Google Scholar 

  • de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals, vol 1. Elsevier Scientific Pub. Co, Amsterdam

    Google Scholar 

  • Desjonquères MC, Spanjaard D (1995) Concepts in surface science. Springer, Berlin

    Google Scholar 

  • Divins NJ, Angurell I, Escudero C, Pérez-Dieste V, Llorca J (2014) Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346:620–623. doi:10.1126/science.1258106

    Article  Google Scholar 

  • Ducastelle F (1991) Order and phase stability in alloys. North Holland, Amsterdam

    Google Scholar 

  • Ersen O, Goyhenex C, Pierron-Bohnes V (2008) Diffusion piloted ordering in codeposited CoPt epitaxial layers: experiment and quenched molecular dynamics simulations. Phys Rev B 78:35429. doi:10.1103/PhysRevB.78.035429

    Article  Google Scholar 

  • Faraday Discussions (2008) Nanoalloys: from theory to application 138:1–442

  • Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. doi:10.1021/cr040090g

    Article  Google Scholar 

  • Gauthier Y, Senhaji A, Legrand B, Tréglia G, Becker C, Wandelt K (2003) An unusual composition profile: a leed-tbim study of Pt\(_{25}\)Cu\(_{75}\)(111). Surf Sci 527:71–79. doi:10.1016/S0039-6028(03)00008-6

    Article  Google Scholar 

  • Goyhenex C (2012) Revised tight-binding second moment potential for transition metal surfaces. Surf Sci 606:325–328. doi:10.1016/j.susc.2011.10.014

    Article  Google Scholar 

  • Goyhenex C, Bulou H, Deville JP, Treglia G (1999) Pt/Co(0001) superstructures in the submonolayer range: a tight-binding quenched-molecular-dynamics study. Phys Rev B 60:2781–2788. doi:10.1103/PhysRevB.60.2781

    Article  Google Scholar 

  • Goyhenex C, Tréglia G (2011) Unified picture of d-band and core-level shifts in transition metal alloys. Phys Rev B 83:075101. doi:10.1103/PhysRevB.83.075101

    Article  Google Scholar 

  • Greeley J, Mavrikakis M (2005) Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. J Phys Chem B 109:3460–3471. doi:10.1021/jp046540q

    Article  Google Scholar 

  • Hammer B, Nørskov JK (1997) Theory of adsorption and reactions. In: Lambert et RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films.  Kluwer Academic Publishers, The Netherlands, pp 285–351

  • Haydock R, Keine V, Kelly MJ (1975) Electronic structure based on the local atomic environment for tight-binding bands. J Phys C 8:2591–2605. doi:10.1088/0022-3719/8/16/011

    Article  Google Scholar 

  • Jaafar A, Goyhenex C, Tréglia G (2010) Rules for tight-binding calculations in bi-metallic compounds based on density functional theory: the case of Co–Au. J Phys Condens Matter 22:505503. doi:10.1088/0953-8984/22/50/505503

    Article  Google Scholar 

  • Kandoi S, Ferrin PA, Mavrikakis M (2010) Hydrogen on and in selected overlayer near-surface alloys and the effect of subsurface hydrogen on the reactivity of alloy surfaces. Top Catal 53:384–392. doi:10.1007/s11244-010-9444-5

    Article  Google Scholar 

  • Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  • Kolb B, Müller S, Botts DB, Hart GLW (2006) Ordering tendencies in the binary alloys of Rh, Pd, Ir, and Pt: density functional calculations. Phys Rev B 74:144206. doi:10.1103/PhysRevB.74.144206

    Article  Google Scholar 

  • Legrand B, Guillope M, Luo JS, Tréglia G (1990) Multilayer relaxation and reconstruction in bcc and fcc transition and noble metals. Vacuum 41:311–314. doi:10.1016/0042-207X(90)90345-Y

    Article  Google Scholar 

  • Lopez A, Tréglia G, Mottet C, Legrand B (2015) Ordering and surface segregation in \(Co_{1-c}Pt_c\) nanoparticles: a theoretical study from surface alloys to nanoalloys. Phys Rev B 91:035407. doi:10.1103/PhysRevB.91.035407

    Article  Google Scholar 

  • López-De Jésus YM, Johnson CE, Monnier JR, Williams CT (2010) Selective hydrogenation of benzonitrile by alumina-supported IrPd catalyst. Top Catal 53:1132–1137. doi:10.1007/s11244-010-9546-0

    Article  Google Scholar 

  • Morfin F, Nassreddine S, Rousset JL, Piccolo L (2012) Nanoalloying effect in the preferential oxidation of Co over IrPd catalysts. ACS Catal 2:2161–2168. doi:10.1021/cs3003325

    Article  Google Scholar 

  • Mottet C, Tréglia G, Legrand B (1996) Electronic structure of Pd clusters in the tight-binding approximation: influence of spd-hybridization. Surf Sci 352–354:675–679. doi:10.1016/0039-6028(95)01211-7

    Article  Google Scholar 

  • Pallassana V, Neurock M, Hansen LB, Nørskov JK (1999) Theoretical analysis of hydrogen chemisorption on Pd(111), Re(0001) and Pd\(_{ML}\)/Re(0001), Re\(_{ML}\)/Pd(111) pseudomorphic overlayers. Phys Rev B 60:6146–6154. doi:10.1103/PhysRevB.60.6146

    Article  Google Scholar 

  • Papaconstantopoulos DA (1986) Handbook of electronic structure of elemental solids. Plenum, New York

    Google Scholar 

  • Parsina I, Baletto F (2009) Tailoring the structural motif of AgCo nanoalloys: core/shell versus Janus-like. J Phys Chem C 114:1504–1511. doi:10.1021/jp909773x

    Article  Google Scholar 

  • Piccolo L (2012) Surface studies of catalysis by metals: nanosize and alloying effects, chap. 11. In: Alloyeau D, Mottet C, Ricolleau C (eds) Nanoalloys: synthesis, structure and properties. Springer, London

    Google Scholar 

  • Piccolo L, Nassreddine S, Aouine M, Ulhaq C, Geantet C (2012) Supported IrPd nanoalloys: size-composition correlation and consequences on tetralin hydroconversion properties. J Catal 292:173–180. doi:10.1016/j.jcat.2012.05.010

    Article  Google Scholar 

  • Rosato V, Guillope M, Legrand B (1989) Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos Mag A 59:321–336. doi:10.1080/01418618908205062

    Article  Google Scholar 

  • Roussel JM, Saúl A, Tréglia G (1997) Microstructure of the surfactant like effect in Ni/Ag(100) and (111). Phys Rev B 55:10931–10937. doi:10.1103/PhysRevB.55.10931

    Article  Google Scholar 

  • Saúl A, Legrand B, Tréglia G (1994) Equilibrium and kinetics in the (111) surface of Cu-Ag alloys: comparison between mean-field and Monte Carlo calculations. Phys Rev B 50:1912–1921. doi:10.1103/PhysRevB.50.1912

    Article  Google Scholar 

  • Shen SY, Zhao TS, Xu JB (2010) Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media. Electrochim Acta 55:9179–9184. doi:10.1016/j.electacta.2010.09.018

    Article  Google Scholar 

  • Tréglia G, Legrand B (1987) Surface-sandwich segregation in Pt–Ni and Ag–Ni alloys: two different physical origins for the same phenomenon. Phys Rev B 35:4338–4344. doi:10.1103/PhysRevB.35.4338

    Article  Google Scholar 

  • Tréglia G, Legrand B, Ducastelle F (1988) Segregation and ordering at surfaces of transition metal alloys: the tight-binding Ising model. Europhys Lett 7:575–580. doi:10.1209/0295-5075/7/7/001

    Article  Google Scholar 

  • Tréglia G, Legrand B, Ducastelle F, Saúl A, Gallis C, Meunier I, Mottet C, Senhaji A (1999) Alloy surfaces: segregation, reconstruction and phase transitions. Comput Mater Sci 15:196–235. doi:10.1016/S0927-0256(99)00004-X

    Article  Google Scholar 

  • Tripathi SN, Bharadwaj SR, Chandrasekharaiah MS (1991) The Ir–Pd (iridium–palladium) system. J Phase Equilib 12:603–605. doi:10.1007/BF02645078

    Article  Google Scholar 

  • Turchi PEA, Drchal V, Kudrnovský J (2006) Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt. Phys Rev B 74:064202. doi:10.1103/PhysRevB.74.064202

    Article  Google Scholar 

  • Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. ChemPhysChem 10:2566–2576. doi:10.1002/cphc.200900289

    Article  Google Scholar 

  • Zlotea C, Morfin F, Nguyen TS, Nguyen NT, Nelayah J, Ricolleau C, Latrochea M, Piccolo L (2014) Nanoalloying bulk-immiscible iridium and palladium inhibits hydride formation and promotes catalytic performances. Nanoscale 6:9955–9959. doi:10.1039/C4NR02836H

    Article  Google Scholar 

  • Zosiak L, Goyhenex C, Kozubski R, Tréglia G (2013) Disentangling coordination and alloy effects in transition-metal nanoalloys from their electronic structure. Phys Rev B 88:014205. doi:10.1103/PhysRevB.88.014205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Goyhenex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriamiharintsoa, T.H., Rakotomahevitra, A., Piccolo, L. et al. IrPd nanoalloys: simulations, from surface segregation to local electronic properties. J Nanopart Res 17, 217 (2015). https://doi.org/10.1007/s11051-015-3020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3020-7

Keywords

Navigation