Skip to main content
Log in

Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

CdS nanoparticles with different morphologies have been synthesized by thermal decomposition of bis(thiourea)cadmium chloride in different solvents without the use of any ligand/surfactant. CdS nanoparticles with pyramid, sponge-like and hexagonal disc-like morphologies were obtained in diphenyl ether (DPE), 1-octadecene (ODE) and ethylene glycol (EG), respectively. In addition, CdS nanoparticles with unique morphologies were obtained when the decomposition of the complex was carried out in mixed solvents (DPE–EG and ODE–EG). Extensive characterization of the CdS nanoparticles was carried out using powder X-ray diffraction, FT-IR spectroscopy, thermal analysis, field-emission scanning electron microscopy, diffuse reflectance spectroscopy and photoluminescence spectroscopy, and detailed mechanism of the formation of CdS nanoparticles with different morphologies in various solvents has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali S, Malik MR, Isab AA, Ahmad S (2009) Synthesis and spectroscopic characterization of cadmium(II) complexes of thiones and thiocyanate. J Coord Chem 62:475–480. doi:10.1080/00958970802226395

    Article  Google Scholar 

  • Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol–gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloy Compd 579:606–611. doi:10.1016/j.jallcom.2013.07.095

    Article  Google Scholar 

  • Angelescu DG, Munteanu G, Anghel DF, Peretz S, Maraloiu AV, Teodorescu VS (2013) Formation mechanism of CdS nanoparticles with tunable luminescence via a non-ionic microemulsion route. J Nanoparticle Res 15: 1376/1–5. doi:10.1007/s11051-012-1376-5

  • Banerjee R, Jayakrishnan R, Banerjee R, Ayyub P (2000) Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys: Condens Matter 12:10647–10654. doi:10.1088/0953-8984/12/50/325

    Google Scholar 

  • Biacchi AJ, Schaak RE (2011) The Solvent Matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. ACS Nano 5:8089–8099. doi:10.1021/nn2026758

    Article  Google Scholar 

  • Biçer M, Aydın AO, Şişman İ (2010) Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates. Electrochim Acta 55:3749–3755. doi:10.1016/j.electacta.2010.02.015

    Article  Google Scholar 

  • Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409. doi:10.1063/1.447218

    Article  Google Scholar 

  • Cabaña ZL, Torres CMS, González G (2011) Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites. Nanoscale Res Lett 6: 523(1–8). doi:10.1186/1556-276X-6-523

  • Cao Y, Hu P, Jia D (2013) Phase- and shape-controlled hydrothermal synthesis of CdS nanoparticles, and oriented attachment growth of its hierarchical architectures. Appl Surf Sci 265:771–777. doi:10.1016/j.apsusc.2012.11.107

  • Carretero MNM, Peregrin JMS (1984) Thermal studies on metal complexes of 5-nitroso-pyrimidine derivatives. II. Thermal behaviour of Cd(II) complexes of 6-amino-5-nitroso-uracil derivatives. J Therm Anal 29:1053–1059. doi:10.1007/bf02188858

    Article  Google Scholar 

  • Chrucinska E, Maslowska J (1987) Kinetics and mechanism of thermal decomposition of cadmium (II) complexes with substituted thioureas. J Therm Anal 32:1323–1332. doi:10.1007/bf01913332

    Article  Google Scholar 

  • Dhayal SS, Ramaniah LM, Ruda HE, Nair SV (2014) Electron states in semiconductor quantum dots. J Chem Phys 141:204702/1-204702/13. doi:10.1063/1.4901923

  • Dimitrov RI, Moldovanska N, Bonev IK (2002) Cadmium sulfide oxidation. Thermochem Acta 385:41–49. doi:10.1016/S0040-6031(01)00693-1

    Article  Google Scholar 

  • Dong W, Wang X, Li B, Wang L, Chen B, Li C, Li X, Zhang T, Shi Z (2011) Hydrothermal synthesis and structure evolution of hierarchical cobalt sulphide nanostructures. Dalton Trans 40:243–248. doi:10.1039/c0dt01107j

    Article  Google Scholar 

  • Duque J, Estévez-hernández O, Reguera E, Ellena J, Corrêa RS (2009) Synthesis, characterization, and single crystal X-ray structure of the 1-furoyl-3-cyclohexylthiourea cadmium chloride complex, Cd[C4H3OC(O)NHC(S)NHC6H11]4Cl2. J Coord Chem 62:2804–2813. doi:10.1080/00958970902926795

    Article  Google Scholar 

  • Gale WF, Totemeier TC (2004) Metallography–electron metallography and surface analysis techniques, Smithells Metals Reference Book, 8th edn. Elsevier Butterworth Heinemann Publications (Charon Tec Pvt Ltd.), Burlington, pp 10–74

    Google Scholar 

  • Giribabu K, Suresh R, Manigandan R, Vijayaraj A, Prabu R, Narayanan V (2012) Cadmium sulphide nanorods: synthesis, characterization and their photocatalytic activity. Bull Korean Chem Soc 33:2910–2916. doi:10.5012/bkcs.2012.33.9.2910

    Article  Google Scholar 

  • Goncalves LFFF, Kanodarwala FK, Stride JA, Silva CJR, Gomes MJJ (2013) One-pot synthesis of CdS nanoparticles exhibiting quantum size effect prepared within a sol–gel derived ureasilicate matrix. Optical Mater 36:186–190. doi:10.1016/j.optmat.2013.08.026

    Article  Google Scholar 

  • Jiang J, He Y, Wan L, Cui Z, Cui Z, Jessop PG (2013) Synthesis of CdS nanoparticles in switchable surfactant reverse micelles. Chem Commun 49:1912–1914. doi:10.1039/c2cc38202d

    Article  Google Scholar 

  • Kale BB, Baeg JO, Kong K, Moon SJ, Nikama LK, Patil KR (2011) Self assembled CdLa2S4 hexagon flowers, nanoprisms and nanowires: novel photocatalysts for solar hydrogen production. J Mater Chem 2:2624–2631. doi:10.1039/c0jm02890h

    Article  Google Scholar 

  • Kelly AT, Rusakova I, Ely TO, Hofmann C, Luttge A, Whitmire KH (2007) Iron phosphide nanostructures produced from a single-source organometallic precursor: nanorods, bundles, crosses, and spherulites. Nano Lett 7:2920–2925. doi:10.1021/nl0713225

    Article  Google Scholar 

  • Krunks M, Madarasz J, Hiltunen L, Manonnen R, Mellikov E, Niinisto L (1997) Structure and thermal behaviour of dichlorobis(thiourea)cadmium(II), a single precursor for CdS thin films. Acta Chem Scand 51:294–301. doi:10.3891/acta.chem.scand.51-0294

    Article  Google Scholar 

  • Kumar P, Saxena N, Chandra R, Gupta V, Agarwal A, Kanjilal D (2012) Nano-twinning and structural phase transition in CdS quantum dots. Nanoscale Res Lett 7: 584(1–7). doi:10.1186/1556-276X-7-584

  • Kumari RG, Ramakrishnan V, Carolin ML, Kumar J, Sarua A, Kuball M (2009) Raman spectral investigation of thiourea complexes. Spectrochimica Acta Part A 73:263–267. doi:10.1016/j.saa.2009.02.009

    Article  Google Scholar 

  • Li C, Yuan J, Han B, Shangguan W (2011) Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. Int J Hydrogen Energy 36:4271–4279. doi:10.1016/j.ijhydene.2011.01.022

    Article  Google Scholar 

  • Mandal T, Stavila V, Rusakova I, Ghosh S, Whitmire KH (2009) Molecular precursors for CdS nanoparticles: synthesis and characterization of carboxylate-thiourea or –thiosemicarbazide cadmium complexes and their decomposition. Chem Mater 21:5617–5626. doi:10.1021/cm902230u

    Article  Google Scholar 

  • Martinez-Alonso C, Rodriguez-Castaneda CA, Moreno-Romero P, Coria-Monroy CS, Hu H (2014) Cadmium sulfide nanoparticles synthesized by microwave heating for hybrid solar cell applications; Int J Photoenergy 453747/1-453747/12. doi:10.1155/2014/453747

  • Moloto N, Revaprasadu N, Moloto MJ, O’Brien P, Helliwell M (2007) N, N′-Diisopropyl- and N, N′-dicyclohexylthiourea cadmium(II) complexes as precursors for the synthesis of CdS nanoparticles. Polyhedron 26:3947–3955. doi:10.1016/j.poly.2007.04.015

    Article  Google Scholar 

  • Moloto MJ, Revaprasadu N, Kolawole GA, O’Brien P, Malik MA, Motevalli M (2010) Synthesis and X-ray single crystal structures of cadmium(II) complexes: CdCl2[CS(NHCH3)2]2 and CdCl2(CS(NH2)NHC6H5)4—single source precursors to CdS nanoparticles. E-J Chem 7:1148–1155. doi:10.1155/2010/561498

    Article  Google Scholar 

  • Moualkia H, Hariech S, Aida MS, Attaf N, Laifa EL (2009), Growth and physical properties of CdS thin films prepared by chemical bath deposition. J Phys D: Appl Phys 42:135404(7 pp). doi:10.1088/0022-3727/42/13/135404

  • Nair PS, Radhakrishnan T, Revaprasadu N, Kolawolea G, O’Brien P (2002) Cadmium ethylxanthate: a novel single-source precursor for the preparation of CdS nanoparticles. J Mater Chem 12:2722–2725. doi:10.1039/b202072f

    Article  Google Scholar 

  • Nair PS, Radhakrishnan T, Revaprasadu N, Kolawole GA (2003) Cd (NH2CSNHNHCSNH2)Cl2: a new single-source precursor for the preparation of CdS nanoparticles. Polyhedron 22:3129–3135. doi:10.1016/S0277-5387(03)00458-3

    Article  Google Scholar 

  • Nejo AO, Nejo AA, Pullabhotla RVSR, Revaprasadu N (2013) A simple route to shape controlled CdS nanoparticles. J Phys Chem Solids 74:245–249. doi:10.1016/j.jpcs.2012.09.013

    Article  Google Scholar 

  • Oliveira JFA, Milão TM, Araújo VD, Moreira ML, Longo E, Bernardi MIB (2011) Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. J Alloy Compd 509:6880–6883. doi:10.1016/j.jallcom.2011.03.171

    Article  Google Scholar 

  • Onwudiwe DC, Strydom CA, Oluwafemi OS (2013) Effect of some nitrogen donor ligands on the optical and structural properties of CdS nanoparticles. New J Chem 37:834–842. doi:10.1039/c3nj40924d

    Article  Google Scholar 

  • Pandey G, Dixit S (2011) Growth mechanism and optical properties determination of CdS nanostructures. J Phys Chem C 115:17633–17642. doi:10.1021/jp2015897

    Article  Google Scholar 

  • Pohl IAM, Westin LG, Kritikos M (2001) Preparation, structure, and properties of a new giant manganese oxo-alkoxide wheel, [Mn19O12(OC2H4OCH3)14 (HOC2H4OCH3)10]· HOC2H4OCH3. Chem Eur J 7:3438–3445. doi:10.1002/1521-3765(20010817)

    Article  Google Scholar 

  • Qin F, Bai B, Jing D, Chen L, Song R, Suo Y (2014) CdS nanoparticles anchored on the surface of yeast via a hydrothermal processes for environmental applications. RSC Advances 4:34864–34872. doi:10.1039/c4ra03033h

    Article  Google Scholar 

  • Ramírez-Santos ÁA, Acevedo-Peña P, Córdoba EM (2014) Photo-assisted electrochemical copper removal from cyanide solutions using porous TiO2 thin film photo-anodes. Mater Res 17:69–77. doi:10.1590/S1516-14392013005000150

    Article  Google Scholar 

  • Seifer GB (2002) Cyanuric acid and cyanurates. Russian J Coord Chem 28:301–324

  • Selvakumar S, Ravi Kumar SM, Rajarajan K, Pragasam AJA, Rajasekar SA, Thamizharasan K, Sagayaraj P (2006) Growth and characterization of a novel organometallic nonlinear optical crystal: bis(thiourea)cadmium formate. Cryst Growth Des 6:2607–2610. doi:10.1021/cg060414p

    Article  Google Scholar 

  • Semenov VN, Naumov AV (2001) Thermal decomposition of cadmium thiourea coordination compounds. Russian J General Chem 71:495–499

  • Singh V, Sharma PK, Chauhan P (2011) Synthesis of CdS nanoparticles with enhanced optical properties. Mater Charact 62:43–52. doi:10.1016/j.matchar.2010.10.009

    Article  Google Scholar 

  • Szecsenyi KM, Iveges EZ, Leovac VM, Vojinovic LS, Kovacs A, Pokol G, Madarasz J, Jacimovic ZK (1998) Transition metal complexes with pyrazole-based ligands. Part 6. Synthesis, characterization and thermal decomposition of cadmium complexes with 3(5)-amino-5(3)-methylpyrazole. Thermochim Acta 316:79–85. doi:10.1016/S0040-6031(98)00292-5

    Article  Google Scholar 

  • Tabatabaee M, Baziari P, Nasirizadeh N, Dehghanizadeh H (2013) Synthesis of CdS nanoparticles by sonochemical reaction using thioasetamide as S2− reservoir and in the presence of a neutral surfactant, dyeing of cotton fabric and study of antibacterial effect on cotton fabric. Adv Mater Res 622:851–854. doi:10.4028/www.scientific.net/AMR.622-623.851

    Google Scholar 

  • Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B Biol 120:66–73. doi:10.1016/j.jphotobiol.2013.01.004

    Article  Google Scholar 

  • Thurston JH, Whitmire KH (2003) Molecular precursors for ferroelectric materials: synthesis and characterization of Bi2M2(μ-O)(sal)4(Hsal)4(OEt)2 and BiM4(μ-O)4(sal)4(Hsal)3(OiPr)4 (sal=O2CC6H4O, Hsal=O2CC6H4OH) (M=Nb, Ta). Inorg Chem 42:2014–2023. doi:10.1021/ic026108s

    Article  Google Scholar 

  • Thurston JH, Ely TO, Trahan D, Whitmire KH (2003) Nanostructured bimetallic oxide ion-conducting ceramics from single-source molecular precursors. Chem Mater 15:4407–4416. doi:10.1021/cm0342851

    Article  Google Scholar 

  • Ushasree PM, Muralidharan R, Jayavel R, Ramasamy P (2000) Growth of bis(thiourea)cadmium chloride single crystals—a potential NLO material of organometallic complex. J Cryst Growth 218:365–371. doi:10.1016/S0022-0248(00)00593-5

    Article  Google Scholar 

  • Venkataramanan V, Maheswaran S, Sherwood JN, Bhat HL (1997) Crystal growth and physical characterization of the semiorganic bis(thiourea)cadmium chloride. J Cryst Growth 179:605–610. doi:10.1016/S0022-0248(97)00137-1

    Article  Google Scholar 

  • Wang W, Germanenko I, El-Shall MS (2002) Room temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1−xS. Chem Mater 14:3028–3033. doi:10.1021/cm020040x

  • Wypych G (2001) Solvent effects based on pure solvent scales-Catalans J, handbook of solvents. ChemTec Publishing, Toronto, p 583

    Google Scholar 

  • Xu L, Hu YL, Pelligra C, Chen CH, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib SL (2009) ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem Mater 21:2875–2885. doi:10.1021/cm900608d

    Article  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5:379–382. doi:10.1021/nl047955q

    Article  Google Scholar 

  • Yu J, Yu Y, Zhou P, Xiao W, Cheng B (2014) Morphology-dependent photocatalytic H2-production activity of CdS. Appl Catal B 156–157:184–191. doi:10.1016/j.apcatb.2014.03.013

    Article  Google Scholar 

  • Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690. doi:10.1039/c3cy00018d

    Article  Google Scholar 

  • Zhang B, Yao W, Huang C, Xu Q, Wu Q (2013) Shape effects of CdS photocatalysts on hydrogen production. Int J Hydrogen Energy 38:7224–7231. doi:10.1016/j.ijhydene.2013.03.173

    Article  Google Scholar 

  • Zhang W, Zheng J; Tan C, Lin X, Hu S, Chen J, You X, Li S (2015) Designed self-assembled hybrid Au@CdS core–shell nanoparticles with negative charge and their application as highly selective biosensors. J Mater Chem B 3:217–224. doi:10.1039/c4tb01713g

Download references

Acknowledgments

The award of Junior Research Fellowship (JRF) to Ms. Rama Gaur, by the Council of Scientific and Industrial Research, Government of India is gratefully acknowledged. Thanks are also due to the Institute Instrumentation Centre, Indian Institute of Technology Roorkee for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, R., Jeevanandam, P. Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents. J Nanopart Res 17, 156 (2015). https://doi.org/10.1007/s11051-015-2961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2961-1

Keywords

Navigation