Skip to main content
Log in

Novel red-emission of ternary ZnCdSe semiconductor nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effect of chain lengths of fatty acids on the physical properties of CdSe and ZnCdSe semiconductor nanocrystals (NCs) synthesized by the colloidal chemistry procedure is investigated. The fatty acids, lauric acid (LA), and stearic acid (SA), with different lengths of carbon chains, are used to prepare CdSe and ZnCdSe NCs when hexyldecylamine (HDA) is applied as the sole surfactant. For CdSe–SA and ZnCdSe–SA, they have the same emission wavelength at 592 nm and the same particle size of 3.3 nm; however, their quantum yield (QY) is 75 and 16 %, respectively. In contrast, the emission wavelength of CdSe–LA and ZnCdSe–LA NCs is 609 and 615 nm, the particle size is about 3.5 and 4 nm under the same reaction time, and the QY of them are 33 and 59 %, respectively. The X-ray diffraction pattern shows that ZnCdSe NCs all have the wurtzite structure, and their main peaks are located between those of pure CdSe and ZnSe materials. The main phase of ZnCdSe–SA and ZnCdSe–LA is ZnSe and CdSe, respectively, implying that alloyed ZnCdSe NC can be prepared and ZnSe and CdSe phase can be promoted by SA and LA, respectively. Moreover, the QY of red-emission ZnCdSe–LA is higher than 50 %. These results suggest that the growth rate of CdSe as well as ZnCdSe NC can be enhanced by using LA as complex reagent and HDA as sole surfactant. It is expected that the reported effective synthetic strategy can be developed as a very practical, easy and not time-consuming approach to prepare red emissive NCs with high QY and high reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. doi:10.1126/science.271.5251.933

    Article  Google Scholar 

  • Balluo B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86. doi:10.1021/bc034153y

    Article  Google Scholar 

  • Bowe CA, Poore DD, Benson RF, Martin DF (2003) Extraction of heavy metals by amines adsorbed onto silica gel. J Environ Sci Health A 38:2653–2660. doi:10.1081/ESE-120024454

    Article  Google Scholar 

  • Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. doi:10.1016/S0958-1669(02)00282-3

    Article  Google Scholar 

  • Chen HS, Kumar RV (2009) Direct synthesis of quantum dots with controllable multimodal size distribution. J Phys Chem C 113:12236–12242. doi:10.1021/jp9025317

    Article  Google Scholar 

  • Chung SR, Wang KW, Chen HS (2013) Green light emission of ZnxCd1−xSe nanocrystals synthesized by one-pot method. J Nanomater 2013:1–9. doi:10.1155/2013/526862

    Article  Google Scholar 

  • Ci Z, Wang Y, Sun Y (2008) Ca1−xMo1−ySiyO4:Eu 3+x : a novel red phosphor for white light emitting diodes. Phys B 403:670–674. doi:10.1016/j.physb.2007.09.071

    Article  Google Scholar 

  • Cumberland SL, Hanif KM, Javier A, Khitrov GA, Strouse GF, Woessner SM, Yun CS (2002) Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem Mater 14:1576–1584. doi:10.1021/cm010709k

    Article  Google Scholar 

  • Gao Y, Zhang Q, Gao Q, Tian Y, Zhou W, Zheng L (2009) Synthesis of high quality CdSe quantum dots through a mild solution-phase synthetic route. Mater Chem Phys 115:724–727. doi:10.1016/j.matchemphys.2009.02.020

    Article  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471. doi:10.1021/jp9530562

    Article  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1998) Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B 102:3655–3657. doi:10.1021/jp9810217

    Article  Google Scholar 

  • Hu Y, Zhuang W, Yeb H, Wang D, Zhang S, Huang X (2005) A novel red phosphor for white light emitting diodes. J Alloys Compd 390:226–229. doi:10.1016/j.jallcom.2004.07.063

    Article  Google Scholar 

  • Kim JU, Lee JJ, Jang HS, Jeon DY, Yang H (2011) Widely tunable emissions of colloidal ZnxCd1−xSe alloy quantum dots using a constant Zn/Cd precursor ratio. J Nanosci Nanotechnol 11:725–729. doi:10.1166/jnn.2011.3193

    Article  Google Scholar 

  • Lee H, Holloway PH, Yang H, Hardison L, Kleiman VD (2006) Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods. J Chem Phys 125:164711-1–164711-7. doi:10.1063/1.2363181

    Google Scholar 

  • Lee H, Yang H, Holloway PH (2007) Single-step growth of colloidal ternary ZnCdSe nanocrystals. J Lumin 126:314–318. doi:10.1016/j.jlumin.2006.08.052

    Article  Google Scholar 

  • Meulenberg RW, Bryan S, Yun CS, Strouse GF (2002) Effects of alkylamine chain length on the thermal behavior of CdSe quantum dot glassy films. J Phys Chem B 106:7774–7780. doi:10.1021/jp025802q

    Article  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. doi:10.1021/ja00072a025

    Article  Google Scholar 

  • Nose K, Fujita H, Omata T, Otsuka-Yao-Matsuo S, Nakamura H, Maeda H (2007) Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties. J Lumin 126:21–26. doi:10.1016/j.jlumin.2006.04.009

    Article  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184. doi:10.1021/ja003633m

    Article  Google Scholar 

  • Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J Am Chem Soc 120:5343–5344. doi:10.1021/ja9805425

    Article  Google Scholar 

  • Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055. doi:10.1021/ja017002j

    Article  Google Scholar 

  • Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337. doi:10.1021/nl0155532

    Article  Google Scholar 

  • Qu L, Yu WW, Peng X (2004) In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett 4:465–469. doi:10.1021/nl035211r

    Article  Google Scholar 

  • Song WS, Kim HJ, Kim YS, Yang H (2010) Synthesis of Ba2Si3O8:Eu2+ phosphor for fabrication of white light-emitting diodes assisted by ZnCdSe/ZnSe quantum dot. J Electrochem Soc 157:J319–J323. doi:10.1149/1.3465655

    Article  Google Scholar 

  • Sung YM, Lee YJ, Park KS (2006) Kinetic analysis for formation of Cd1−x Zn x Se solid-solution nanocrystals. J Am Chem Soc 128:9002–9003. doi:10.1021/ja061858c

    Article  Google Scholar 

  • Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphosphine mixture. Nano Lett 4:207–211. doi:10.1021/nl0155126

    Article  Google Scholar 

  • Thomas M, Rao PP, Deepa M, Chandran MR, Koshy P (2009) Novel powellite-based red-emitting phosphors: CaLa1−x NbMoO8:xEu3+ for white light emitting diodes. J Solid State Chem 182:203–207. doi:10.1016/j.jssc.2008.10.015

    Article  Google Scholar 

  • Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858. doi:10.1021/cm000843p

    Article  Google Scholar 

  • Wang C, Jiang Y, Chen L, Li S, Li G, Zhang Z (2009) Temperature dependence of optical properties and size tunability CdSe quantum dots via non-TOP synthesis. Mater Chem Phys 116:388–391. doi:10.1016/j.matchemphys.2009.03.041

    Article  Google Scholar 

  • Wu H, Zhang X, Guo C, Xu J, Wu M, Su Q (2005) Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors. IEEE Photon Technol Lett 17:1160–1162. doi:10.1109/LPT.2005.846504

    Article  Google Scholar 

  • Wuister SF, Swart I, Driel FV, Hickey SG, Donega CDM (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 4:503–507. doi:10.1021/nl034054t

    Article  Google Scholar 

  • Xu L, Chen K, El-Khair HM, Li M, Huang X (2001) Enhancement of band-edge luminescence and photo-stability in colloidal CdSe quantum dots by various surface passivation technologies. Appl Surf Sci 172:84–88. doi:10.1016/S0169-4332(00)00834-5

    Article  Google Scholar 

  • Yang D, Chen Q, Xu S (2007) Synthesis of CdSe/CdS with a simple non-TOP-based route. J Lumin 126:853–858. doi:10.1016/j.jlumin.2006.12.010

    Article  Google Scholar 

  • Zhong X, Han M, Dong Z, White TJ, Knoll W (2003a) Composition-tunable Zn x Cd1−x Se nanocrystals with high luminescence and stability. J Am Chem Soc 125:8589–8594. doi:10.1021/ja035096m

    Article  Google Scholar 

  • Zhong X, Feng Y, Knoll W, Han M (2003b) Alloyed Zn x Cd1−x S nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 125:13559–13563. doi:10.1021/ja036683a

    Article  Google Scholar 

  • Zhong X, Zhang Z, Liu S, Han M, Knoll W (2004) Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1−xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength. J Phys Chem B 108:15552–15559. doi:10.1021/jp048071y

    Article  Google Scholar 

  • Zhong X, Feng Y, Zhang Y (2007) Facile and reproducible synthesis of red-emitting CdSe nanocrystals in amine with long-term fixation of particle size and size distribution. J Phys Chem C 111:526–531. doi:10.1021/jp064797d

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of ROC under Contract 98-2218-E-150-003, 99-2221-E-150-053, and 103-2221-E-150-055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ru Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, SR., Wang, KW., Chen, HS. et al. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals. J Nanopart Res 17, 101 (2015). https://doi.org/10.1007/s11051-015-2906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2906-8

Keywords

Navigation