Skip to main content
Log in

Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO–ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s−1. Thermal conductivity enhancement of 30 % was obtained for GO–ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322:3895–3901. doi:10.1016/j.jmmm.2010.08.016

    Article  Google Scholar 

  • Acik M, Chabal YJ (2012) A review on reducing graphene oxide for band gap engineering. J Mater Sci Res 2:101

    Google Scholar 

  • Amato G (1991) A new approach in the optical characterization of amorphous hydrogenated silicon-carbon alloys. Phys Status Solidi (b) 165:623–634

    Article  Google Scholar 

  • Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2014) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25:801–810. doi:10.1016/j.apt.2013.11.015

    Article  Google Scholar 

  • Baby TT, Ramaprabhu S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308. doi:10.1063/1.3516289

    Article  Google Scholar 

  • Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21:9702–9709. doi:10.1039/c0jm04106h

    Article  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701. doi:10.1021/ja8021686

    Article  Google Scholar 

  • Brodie B (1860) Sur le poids atomique du graphite. Ann de chim et de phys 59:466–472

    Google Scholar 

  • Cancado L et al (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106

    Article  Google Scholar 

  • Carrique F, Ruiz-Reina E (2009) Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination. J Phys Chem B 113:10261–10270

    Article  Google Scholar 

  • Chakraborty S, Padhy S (2008) Anomalous electrical conductivity of nanoscale colloidal suspensions. ACS Nano 2:2029–2036. doi:10.1021/nn800343h

    Article  Google Scholar 

  • Chen L, Xie H (2009) Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A 352:136–140

    Article  Google Scholar 

  • Chen S, Zhu J, Huang H, Zeng G, Nie F, Wang X (2010) Facile solvothermal synthesis of graphene–MnOOH nanocomposites. J Solid State Chem 183:2552–2557

    Article  Google Scholar 

  • Dimiev AM, Alemany LB, Tour JM (2012) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588. doi:10.1021/nn3047378

    Article  Google Scholar 

  • Dong M, Shen LP, Wang H, Wang HB, Miao J (2013) Investigation on the electrical conductivity of transformer oil-Based AlN nanofluid. J Nano Mater 2013:7. doi:10.1155/2013/842963

    Google Scholar 

  • El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films. Appl Surf Sci 258:7668–7677. doi:10.1016/j.apsusc.2012.04.118

    Article  Google Scholar 

  • Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330

    Article  Google Scholar 

  • Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C (2008) Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. doi:10.1063/1.2908229

    Google Scholar 

  • Glover B, Whites KW, Hong H, Mukherjee A, Billups WE (2008) Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synth Met 158:506–508. doi:10.1016/j.synthmet.2008.03.022

    Article  Google Scholar 

  • Goharshadi EK, Azizi-Toupkanloo H (2013a) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101. doi:10.1016/j.powtec.2012.12.059

    Article  Google Scholar 

  • Goharshadi EK, Azizi-Toupkanloo H (2013b) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101

    Article  Google Scholar 

  • Goharshadi EK, Hadadian M (2012) Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles. Ceram Int 38:1771–1777. doi:10.1016/j.ceramint.2011.09.063

    Article  Google Scholar 

  • Goharshadi EK, Ahmadzadeh H, Samiee S, Hadadian M (2013) Nanofluids for heat transfer enhancement–A review. Phys Chem Res 1:1–33

    Google Scholar 

  • Goncalves G, Marques PA, Granadeiro CM, Nogueira HI, Singh M, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications, vol 125. Academic press, London

    Google Scholar 

  • Jain S, Patel H, Das S (2009) Brownian dynamic simulation for the prediction of effective thermal conductivity of nanofluid. J Nanopart Res 11:767–773. doi:10.1007/s11051-008-9454-4

    Article  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316. doi:10.1063/1.1756684

    Article  Google Scholar 

  • Jung I et al (2009) Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J Phys Chem C 113:18480–18486. doi:10.1021/jp904396j

    Article  Google Scholar 

  • Kang D-W, Shin H-S (2012) Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett 13:39–43

    Article  Google Scholar 

  • Kolbe J, Arp A, Calderone F, Meyer EM, Meyer W, Schaefer H, Stuve M (2007) Inkjettable conductive adhesive for use in microelectronics and microsystems technology. Microelectron Reliab 47:331–334

    Article  Google Scholar 

  • Kole M, Dey T (2010) Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D 43:315501

    Article  Google Scholar 

  • Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys. doi:10.1063/1.4793581

    Google Scholar 

  • Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49

    Article  Google Scholar 

  • Kumar CMP, Venkatesha TV, Shabadi R (2013) Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater Res Bull 48:1477–1483. doi:10.1016/j.materresbull.2012.12.064

    Article  Google Scholar 

  • Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC (2014) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem 6:151–158. doi:10.1038/nchem.1820

    Article  Google Scholar 

  • Lee JW, Ko JM, Kim J-D (2012) Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim Acta 85:459–466. doi:10.1016/j.electacta.2012.08.070

    Article  Google Scholar 

  • Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem b 102:4477–4482

    Article  Google Scholar 

  • Li H, Zhao Q, Li X, Zhu Z, Tade M, Liu S (2013) Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite. J Nanopart Res 15:1–11. doi:10.1007/s11051-013-1670-x

    Google Scholar 

  • Lide DR (2000) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton

    Google Scholar 

  • Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  Google Scholar 

  • Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon S-H (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102. doi:10.1021/la102425a

    Article  Google Scholar 

  • Ma W, Yang F, Shi J, Wang F, Zhang Z, Wang S (2013) Silicone based nanofluids containing functionalized graphene nanosheets. Colloids Surf A 431:120–126. doi:10.1016/j.colsurfa.2013.04.031

    Article  Google Scholar 

  • Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. doi:10.1016/j.physrep.2009.02.003

    Article  Google Scholar 

  • Marcano DC et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. doi:10.1021/nn1006368

    Article  Google Scholar 

  • Maxwell JC (1904) A treatise on electricity and magnetism vol 1, 3rd edn. Clarendon, Oxford

    Google Scholar 

  • Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNBM, Metselaar HSC (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9:1–12

    Article  Google Scholar 

  • Minea A, Luciu R (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977–985. doi:10.1007/s10404-012-1017-4

    Article  Google Scholar 

  • Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372

    Article  Google Scholar 

  • Moosavi M, Goharshadi EK, Youssefi A (2010) Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow 31:599–605

    Article  Google Scholar 

  • Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692. doi:10.1063/1.365209

    Article  Google Scholar 

  • Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009) Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys Rev B 79:155413

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nano 4:217–224

    Article  Google Scholar 

  • Patel H, Sundararajan T, Das S (2010) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12:1015–1031. doi:10.1007/s11051-009-9658-2

    Article  Google Scholar 

  • Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. PCCP 9:1276–1290

    Article  Google Scholar 

  • Radović M, Dohčević-Mitrović Z, Golubović A, Fruth V, Preda S, Šćepanović M, Popović ZV (2013) Influence of Fe3+-doping on optical properties of CeO2−y nanopowders. Ceram Int 39:4929–4936. doi:10.1016/j.ceramint.2012.11.087

    Article  Google Scholar 

  • Ruan B, Jacobi A (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett 7:1–14. doi:10.1186/1556-276X-7-127

    Article  Google Scholar 

  • Salehi J, Heyhat M, Rajabpour A (2013) Enhancement of thermal conductivity of silver nanofluid synthesized by a one-step method with the effect of polyvinylpyrrolidone on thermal behavior. Appl Phys Lett 102:231907

    Article  Google Scholar 

  • Sarojini KGK, Manoj SV, Singh PK, Pradeep T, Das SK (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39–46. doi:10.1016/j.colsurfa.2012.10.010

    Article  Google Scholar 

  • Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409

    Article  Google Scholar 

  • Shen L, Wang H, Dong M, Ma Z, Wang H (2012) Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Phys Lett A 376:1053–1057

    Article  Google Scholar 

  • Shih C-J, Lin S, Sharma R, Strano MS, Blankschtein D (2011) Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28:235–241

    Article  Google Scholar 

  • Solomon I, Schmidt MP, Sénémaud C, Driss Khodja M (1988) Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy. Phys Rev B 38:13263–13270

    Article  Google Scholar 

  • Sun L et al (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances 2:4498–4506. doi:10.1039/C2RA01367C

    Article  Google Scholar 

  • Tesfai W, Singh P, Shatilla Y, Iqbal M, Abdala A (2013) Rheology and microstructure of dilute graphene oxide suspension. J Nanopart Res 15:1–7. doi:10.1007/s11051-013-1989-3

    Google Scholar 

  • Tuinstra F (1970) Raman spectrum of graphite. J Chem Phys 53:1126. doi:10.1063/1.1674108

    Article  Google Scholar 

  • Wang B, Wang X, Lou W, Hao J (2012a) Thermal conductivity and rheological properties of graphite/oil nanofluids. Colloids Surf A 414:125–131. doi:10.1016/j.colsurfa.2012.08.008

    Article  Google Scholar 

  • Wang D-W, Du A, Taran E, Lu GQ, Gentle IR (2012b) A water-dielectric capacitor using hydrated graphene oxide film. J Mater Chem 22:21085. doi:10.1039/c2jm34476a

    Article  Google Scholar 

  • White SB, Shih AJ-M, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:1–5

    Article  Google Scholar 

  • Wojtoniszak M, Mijowska E (2012) Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J Nanopart Res 14:1–7. doi:10.1007/s11051-012-1248-z

    Google Scholar 

  • Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499. doi:10.1016/j.carbon.2008.10.031

    Article  Google Scholar 

  • Yeganeh M, Shahtahmasebi N, Kompany A, Goharshadi E, Youssefi A, Šiller L (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53:3186–3192

    Article  Google Scholar 

  • Yin D et al (2013) Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 24:105102

    Article  Google Scholar 

  • Yu W, Xie H, Bao D (2010a) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 21:055705

    Article  Google Scholar 

  • Yu W, Xie H, Chen W (2010b) Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys 107:094317

    Article  Google Scholar 

  • Yu W, Xie H, Wang X, Wang X (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375:1323–1328. doi:10.1016/j.physleta.2011.01.040

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Ferdowsi University of Mashhad for support of this project (Grant no. 3/29228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh K. Goharshadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadadian, M., Goharshadi, E.K. & Youssefi, A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanopart Res 16, 2788 (2014). https://doi.org/10.1007/s11051-014-2788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2788-1

Keywords

Navigation