Skip to main content
Log in

Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2015

Abstract

Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Afrooz ARMN, Khan IA, Hussain SM, Saleh NB (2013) Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry. Environ Sci Technol 47:1853–1860. doi:10.1021/es3032709

    Article  Google Scholar 

  • Afrooz ARM, Sivalapalan ST, Murphy CJ, Hussain SM, Schlager JJ, Saleh NB (2013) Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 91(1):93–98. doi:10.1016/j.chemosphere.2012.11.031

  • Allison AC (1971) Lysosomes and toxicity of particulate pollutants. Arch Intern Med 128:131. doi:10.1001/archinte.128.1.131

    Article  Google Scholar 

  • Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391. doi:10.1038/nnano.2011.58

    Article  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—Effects of size and crystalline structure. Chemosphere 90:1083–1090. doi:10.1016/j.chemosphere.2012.09.013

    Article  Google Scholar 

  • Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159

    Article  Google Scholar 

  • Kante B et al (1982) Toxicity of polyalkylcyanoacrylate nanoparticles I: Free nanoparticles. J Pharm Sci 71:786–790

    Article  Google Scholar 

  • Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res Part A 100A:1033–1043. doi:10.1002/jbm.a.34053

    Article  Google Scholar 

  • Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. doi:10.1021/ja01167a001

    Article  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Universality in colloid aggregation. Nature 339:360–362. doi:10.1038/339360a0

    Article  Google Scholar 

  • Lison D et al (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104:155–162. doi:10.1093/toxsci/kfn072

    Article  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): implications for Nanoparticle Neurotoxicity. Environ Sci Technol 40:4346–4352. doi:10.1021/es060589n

    Article  Google Scholar 

  • Long TC et al (2007) Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in vitro. Environ Health Perspect 115:1631–1637. doi:10.2307/4626985

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  Google Scholar 

  • Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. doi:10.1038/nmat2442

    Article  Google Scholar 

  • Oberdorster G et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part fibre toxicol 2:8. doi:10.1186/1743-8977-2-8

    Article  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.1289/ehp.7339

    Article  Google Scholar 

  • Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25. doi:10.1080/17435390701314761

    Article  Google Scholar 

  • Pasquini LM, Hashmi SM, Sommer TJ, Elimelech M, Zimmerman JB (2012) Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. Environ Sci Technol 46:6297–6305. doi:10.1021/es300514s

    Article  Google Scholar 

  • Pecora R (1985) Dynamic light scattering: Applications of photon correlation spectroscopy. Springer-Verlag, New York, LLC

    Book  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanoparticle Res 10:795–814. doi:10.1007/s11051-007-9315-6

    Article  Google Scholar 

  • Potočnik J (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance Official. J Eur Union 275:38–40

    Google Scholar 

  • Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44:2412–2418. doi:10.1021/es903059t

    Article  Google Scholar 

  • Schulze C et al (2008) Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61. doi:10.1080/17435390802018378

    Article  Google Scholar 

  • Shields SP, Richards VN, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22:3212–3225. doi:10.1021/cm100458b

    Article  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  Google Scholar 

  • Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys Rev Lett 52:1433–1436. doi:10.1103/PhysRevLett.52.1433

    Article  Google Scholar 

  • Wiogo HTR, Lim M, Bulmus V, Amal R Effects of surface functional groups on the aggregation stability of magnetite nanoparticles in biological media containing serum. In: Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on, 15–18 August 2011. pp 841–844 doi:z10.1109/nano.2011.6144499

  • Wu H, Lattuada M, Morbidelli M (2013) Dependence of fractal dimension of DLCA clusters on size of primary particles. Adv Colloid Interface Sci 195:41. doi:10.1016/j.cis.2013.04.001

    Article  Google Scholar 

  • Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956. doi:10.1016/j.watres.2010.02.025

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the US Air Force Research Lab (Award# FA 8650-10-2-6062). We are grateful to Dr. Haijun Qian of Clemson Microscopy Center for his kind assistance in TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid B. Saleh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrooz, A.R.M.N., Hussain, S.M. & Saleh, N.B. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution. J Nanopart Res 16, 2771 (2014). https://doi.org/10.1007/s11051-014-2771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2771-x

Keywords

Navigation