Skip to main content
Log in

Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recently, nanomaterials, especially titanium-based nanomaterials, have a great potential for decolorization of textile dye effluents. In this article, the nanofibrillar filters functionalized with titanium nanoparticle (nTi) were designed to improve dyeing wastewater decolorization. Pristine polypropylene (PP) and nTi-PP nanocomposite nonwovens were produced as a photocatalyzer by melt-electrospinning process. The average diameter of pristine PP- and nTi-PP nanocomposite melt-electrospun fibers was found average as 700 ± 0.3 and 800 ± 0.4 nm, respectively. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to improve decomposition activity. Scanning electron microscopy (SEM) results revealed that titanium nanoparticles were deposited uniformly on the nanofibers. X-ray photon spectroscopy (XPS) results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by using methyl orange (MO) as a model compound. The decolorization experiments were carried out by varying initial dye concentration (10, 20, 40 mg/L), pH (2, 5, and 9), and loaded TiO2 amount (1 and 2 %). According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filter has better properties compared to GA-untreated group from point of photocatalytic efficiency, especially over 90 % decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. The complete decolarization of MO was observed at pH value of 5, photocatalyst concentration of 20 mg/L, and 1 % nTi-loading after 3 h. The results show that surface activated PP nonwovens, which is introduced Ti nanoparticles into and onto the structure, a good photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aksu Z, Çağatay SS (2006) Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems. Sep Purıf Technol 48:24–35. doi:10.1016/j.seppur.2005.07.017

    Article  Google Scholar 

  • Al-Qaradawi S, Salman RS (2002) Photocatalytic degradation of methyl orange as a model compound. J Photochem Photobiol A 148:161–168. doi:10.1016/S1010-6030(02)00086-2

    Article  Google Scholar 

  • Balamurugan R, Sundarrajan S, Ramakrishna R (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1:232–248. doi:10.3390/membranes1030232

    Article  Google Scholar 

  • Barka N, Assabbane A, Nounah A, Dussaud J, Ichou YA (2008) Photocatalytic degradation of methyl orange with immobilized TiO2 Nanoparticles: effect of pH and some inorganic anions. Phys Chem News 41:85–88

    Google Scholar 

  • Blake DN (1995) Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, document NREL/TP-473-20300. National Renewable Energy Laboratory/DOE, Golden Co, Golden

    Google Scholar 

  • Carter SR, Stefan MI, Bolton JR, Safarzadeh-Amiri A (2000) UV/H2O2 treatment of methyl tertbutyl ether in contaminated waters. Environ Sci Technol 34:659–662. doi:10.1021/es9905750

    Article  Google Scholar 

  • Chanathaworn J, Bunyakan C, Wiyaratn W, Chungsiriporn J, Songklanakarin J (2012) Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor. Sci Technol 34:203–210

    Google Scholar 

  • Chiu CW, Lin CA, Hong PD (2011) Melt-spinning and thermal stability behaviour of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 18:367–372. doi:10.1007/s10965-010-9426-0

    Article  Google Scholar 

  • Dalton PD, Klinkhammer K, Salber J, Klee D, Moeller M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7:686–690. doi:10.1021/bm050777q

    Article  Google Scholar 

  • Dalton PD, Joergensen NT, Groll J, Moeller M (2008) Patterned melt electrospun substrates for tissue engineering. Biomed Mater 3:034109. doi:10.1088/1748-6041/3/3/034109034109

    Article  Google Scholar 

  • Dastjerdi R, Mojtahedi MRM, Shoshtari AM (2008) Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns. Fiber Polym 9:727–734. doi:10.1007/s12221-008-0114-1

    Article  Google Scholar 

  • Dastjerdi R, Mojtahedi MRM, Shostar AM, Khosroshah A (2010) Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. J Text Inst 101:204–213. doi:10.1080/00405000802346388

    Article  Google Scholar 

  • Drew C, Liu X, Ziegler D, Wang X, Bruno FF, Whitten J, Samuelson LA, Kumar J (2003) Metal oxide-coated polymer nanofibers. Nano Lett 3:143–147. doi:10.1021/nl025850m

    Article  Google Scholar 

  • Evgenidou E, Fytianos K, Poulios I (2005) Photocatalytic oxidation of dimethoate in aqueous solutions. J Photochem Photobiol A 175:29–38. doi:10.1016/j.jphotochem.2005.04.021

    Article  Google Scholar 

  • Garcia JL, Galindo E (1990) An immobilization technique yielding high enzymatic load on nylon nets. Biotechnol Tech 4:425–428. doi:10.1007/BF00159390

    Article  Google Scholar 

  • Grassian VH (2005) Environmental catalysis. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Guettaï N, Amar HA (2005) Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: parametric study. Desalination 185:427–437. doi:10.1016/j.desal.2005.04.048

    Article  Google Scholar 

  • Hacker C, Karahaliloğlu Z, Seide G, Denkbaş EB (2014) Functionally modified, melt electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131:1–12. doi:10.1002/APP.40132

    Article  Google Scholar 

  • Huang KS, Lian HS, Chen JB (2011) Study on the modification of PP nonwoven fabric. Fibres Text East Eur 19:82–87

    Google Scholar 

  • Hung C, Chuang H, Chang F (2008) Novel reactive compatibilization strategy on immiscible polypropylene and polystyrene blend. J Appl Polym Sci 107:831–839. doi:10.1002/app.25201

    Article  Google Scholar 

  • Jaworek A, Krupa A, Lackowski M, Sobczyk AT, Czech T, Ramakrishna S, Sundarrajan S, Pliszka D (2009) Electrostatic method for the production of polymer nanofibers blended with metal-oxide nanoparticles. J Phys 146:1–6. doi:10.1088/1742-6596/146/1/012006

    Google Scholar 

  • Karger-Kocsis J (1999) Polyprophylene an A–Z reference. Kluwer Academic, London

    Google Scholar 

  • Kim J, Hinestroza JP, Jasper W, Barker RL (2009) Effect of solvent exposure on the filtration performance of electrostatically charged polypropylene filter media. Text Res J 79:343–350. doi:10.1177/0040517508090887

    Article  Google Scholar 

  • Lee S, Obendorf SK (2007) Barrier effectiveness and thermal comfort of protective clothing materials. J Text I 98:87–97. doi:10.1533/joti.2005.0143

    Article  Google Scholar 

  • Lee KH, Ohsawa O, Watanabe K, Kim IS, Givens SR, Chase B, Rabolt JF (2009) Electrospinning of syndiotactic polypropylene from a polymer solution at ambient temperatures. Macromolecules 42:5215–5218. doi:10.1021/ma9006472

    Article  Google Scholar 

  • Malato S, Blanco J, Ritchter C, Braun B, Maldonado MI (1998) Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl Catal B 17:347–356. doi:10.1016/S0926-3373(98)00019-8

    Article  Google Scholar 

  • Nam W, Kim J, Han G (2002) Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere 47:1019–1024. doi:10.1016/S0045-6535(01)00327-7

    Article  Google Scholar 

  • Nillson R, Nordlinder R, Wass U, Meding B, Belin L (1993) Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br J Ind Med 50:65–70. doi:10.1136/oem.50.1.65

    Google Scholar 

  • Nishio J, Tokumura M, Znad HT, Kawase Y (2006) Photocatalytic decolourization of azo-dye with zinc oxide power in an external UV light irradiation slurry photoreactor. J Hazard Mater 138:106–115. doi:10.1016/j.jhazmat.2006.05.039

    Article  Google Scholar 

  • Noumowe A (2005) Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 °C. Cement Concr Res 35:2192–2198. doi:10.1016/j.cemconres.2005.03.007

    Article  Google Scholar 

  • Ong S, Keng P, Lee W, Ha S, Hung Y (2011) Dye waste treatment. Water 3:157–176. doi:10.3390/w3010157

    Article  Google Scholar 

  • Park H, Choi W (2003) Visible light and Fe (III)-mediated degradation of acid orange 7 in the absence of H2O2. J Photochem Photobiol A 159:241–247. doi:10.1016/S1010-6030(03)00141-2

    Article  Google Scholar 

  • Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16:10370–10386. doi:10.3390/molecules161210370

    Article  Google Scholar 

  • Sheikh FA, Kanjwal MA, Kim Hern, Pandeya DR, Hong ST, Kim HY (2010) Fabrication of titanium oxide nanofibers containing silver nanoparticles. J Ceram Process Res 11:685–691

    Google Scholar 

  • Wei L, Shifu C, Wei Z, Sujuan Z (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J Hazard Mater 164:154–160. doi:10.1016/j.jhazmat.2008.07.140

    Article  Google Scholar 

  • Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851. doi:10.1021/jp980922c

    Article  Google Scholar 

  • Yang WJ, Yang CS, Huang CJ, Chen KS, Lin SF (2012) Bostrycin, a novel coupling agent for protein immobilization and prevention of biomaterial-centered infection produced by Nigrospora sp. No. 407. Enzym Microb Technol 50:287–292. doi:10.1016/j.enzmictec.2012.02.002

    Article  Google Scholar 

  • Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3:1312–1319. doi:10.1021/bm020074y

    Article  Google Scholar 

  • Zhu H, Ru J, Fu Y, Guan Y, Yao J, Xiao L, Zeng G (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48. doi:10.1016/j.desal.2011.10.036

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tayfun Vural from Hacettepe University for the considerable assistance regarding the analytical methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Baki Denkbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahaliloglu, Z., Hacker, C., Demirbilek, M. et al. Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles. J Nanopart Res 16, 2615 (2014). https://doi.org/10.1007/s11051-014-2615-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2615-8

Keywords

Navigation