Skip to main content
Log in

A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The use of micro-algae for the production of noble metal nanoparticles has drawn much attention recently. This paper aims to address some questions raised by our earlier publications and some recent reports from other groups, among which the biological pathways involved in the bioreduction of noble metal cations into nanoparticles and the design of stable colloids. TEM micrographs, taken at the early stage of contact between cells and salt solutions, show undoubtedly that the biomineralization process occurs within the thylakoidal membranes, which are the organelles responsible for photosynthesis. We strongly believe that the available enzymes and their cofactors (enzymatic machinery) are the key molecules that allow such reduction, promoting therefore the formation of nanoparticles. In addition, by comparing the characteristics of gold colloids made by polysaccharides-producing and non-producing micro-algae strains, we demonstrate that the stability of those colloids is ensured predominantly by those biopolymers. These macrobiomolecules control partly the size and the shape of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  Google Scholar 

  • Arockiya Aarthi Rajathi F, Parthiban C, Ganesh Kumar V, Anantharaman P (2012) Biosynthesis of Antibacterial Gold Nanoparticles Using Brown Alga, Stoechospermum marginatum (kutzing). Spectrochim Acta Part A Mol Biomol Spectrosc 99:166–173

    Article  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B 70:142–146

    Article  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. JACS 128:11958–11963

    Article  Google Scholar 

  • Bazylnski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    Google Scholar 

  • Bertocchi C, Navarini L, Cesaro A, Anastasio M (1990) Polysaccharides from cyanobacteria. Carbohydr Polymers 12:127–153

    Article  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djédjat C, Yeprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    Article  Google Scholar 

  • Brayner R, Yeprémian C, Djédiat C, Coradin T, Herbst F, Livage J, Fiévet F, Couté A (2009) Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. Langmuir 25:10062–10067

    Article  Google Scholar 

  • Brayner R, Coradin T, Beaunier P, Grenèche JM, Djédiat C, Yeprémian C, Couté A, Fiévet F (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Coll Surf B 93:20–23

    Article  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2008) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152

    Article  Google Scholar 

  • Coker VS, Bennett JA, Telling ND, Henkel T, Charnock JM, van der Laan G, Pattrick RAD, Pearce CI, Cutting RS, Shannon IJ, Wood J, Arenholz E, Lyon IC, Lloyd JR (2010) Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4:2577–2584

    Article  Google Scholar 

  • Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Brayner R (2010) Design of magnetic akaganeite-cyanobacteria hybrid biofilms. Thin Solid Films 518:5432–5436

    Article  Google Scholar 

  • Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012a) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288

    Article  Google Scholar 

  • Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012b) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanoparticle Res 14:17

    Article  Google Scholar 

  • Dahoumane SA, Wijesekera K, Filipe CD, Brennan JD (2014) Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. J Coll Interface Sci 416:67–72

    Article  Google Scholar 

  • Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064

    Article  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum Strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  Google Scholar 

  • Gong J, Zhang ZM, Bai HJ, Yang GE (2007) Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Sci China Ser E 50:302–307

    Article  Google Scholar 

  • Greene B, Hosea M, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Interaction of Gold(I) and Gold(III) complexes with algal biomass. Environ Sci Technol 20:627–632

    Article  Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480

    Article  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006

    Article  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009a) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B 71:226–229

    Article  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  Google Scholar 

  • Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 100:5356–5358

    Article  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and Archaea. Appl Environ Microbiol 67:3275–3279

    Article  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. PNAS 96:13611–13614

    Article  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive Deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconducteur CdS nanoparticles, their characterization, and their use in the fabrication in an ideal diode. Biotechnol Bioeng 78:583–588

    Article  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  Google Scholar 

  • Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486

    Article  Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  Google Scholar 

  • Lee JH, Kim MG, Yoo B, Myung NV, Maeng J, Lee T, Dohnalkova AC, Fredrickson JK, Sadowsky MJ, Hur HG (2007) Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. Strain HN-41. PNAS 104:20410–20415

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from Gold(I)-Thiosulfate and Gold(III)-Chloride complexes. Langmuir 22:2780–2787

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006b) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir 22:7318–7323

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007a) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007b) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987

    Article  Google Scholar 

  • Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem C 109:15256–15263

    Article  Google Scholar 

  • Lloyd JR, Byrne JM, Coker VS (2011) Biotechnological synthesis of functional nanomaterials. Curr Opin Biotechnol 22:509–515

    Article  Google Scholar 

  • Lovley DR, Stolz JF, Nord GLJ, Phillips EJP (1987) Anaerobic production of magnetic by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  Google Scholar 

  • Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13:6439–6445

    Article  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown Alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4 Ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 5:461–463

    Article  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des 2:293–298

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156:1–13

    Article  Google Scholar 

  • Ninfa AJ, Ballou DP, Benore M (2010) Fundamental laboratory approaches for biochemistry and biotechnology, 2nd edn. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2011) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60

    Article  Google Scholar 

  • Parikh RY, Singh S, Prasad BL, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422

    Article  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RA, Mosselmans JF, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:13 

    Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B 74:309–316

    Article  Google Scholar 

  • Prasad K, Jha AK (2009) ZnO Nanoparticles: synthesis and adsorption study. Natural Sci 01:129–135

    Article  Google Scholar 

  • Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb Technol 45:267–273

    Article  Google Scholar 

  • Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  Google Scholar 

  • Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and eps-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

    Article  Google Scholar 

  • Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118

    Article  Google Scholar 

  • Shabnam N, Pardha-Saradhi P (2013) Photosynthetic electron transport system promotes synthesis of au-nanoparticles. PLOS ONE 8:7

    Article  Google Scholar 

  • Sicard C, Brayner R, Margueritat J, Hémadi M, Couté A, Yéprémian C, Djédiat C, Aubard J, Fiévet F, Livage J, Coradin T (2010) Nano-gold Biosynthesis by silica-encapsulated Micro-algae: a “living” bio-hybrid material. J Mater Chem 20:9342–9347

    Article  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii greville. Colloids Surf B 57:97–101

    Article  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559

    Article  Google Scholar 

  • Williams P, Keshavarz-Moore E, Dunnill P (1996) Efficient production of microbially synthesized cadmium sulfide quantum semiconductor crystallites. Enzyme Microb Technol 19:208–213

    Article  Google Scholar 

  • Zhang YX, Zheng J, Gao G, Kong YF, Zhi X, Wang K, Zhang XQ, Cui DX (2011) Biosynthesis of gold nanoparticles using chloroplasts. Int J Nanomed 6:2899–2906

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thibaud Coradin or Roberta Brayner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahoumane, S.A., Yéprémian, C., Djédiat, C. et al. A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16, 2607 (2014). https://doi.org/10.1007/s11051-014-2607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2607-8

Keywords

Navigation