Skip to main content
Log in

Polyol-mediated syntheses of crystalline nanosized manganese oxides

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Potassium-type birnessite and lithium-containing manganese oxides were prepared by the polyol process. The Mn(III)/Mn(IV) mixed-valencies compounds are obtained through the controlled reduction of potassium permanganate in a basic water–diethylene glycol mixture at moderate temperature and very short reaction time, 70 °C and 10 min, respectively. Both solids are quite well crystallized and display high specific surface areas, 137 and 329 m2 g−1, respectively. Several polyols with variable chain lengths have been used and it is shown that the nature of the polyol has a marked influence on the textural properties of the birnessite-type solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  • Ahmed KAM, Huang K (2012) Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods. Mater Chem Phys 133:605–610

    Article  Google Scholar 

  • Amatucci G, Du Pasquier A, Blyr A, Zheng T, Tarascon JM (1999) The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochim Acta 45:255–271

    Article  Google Scholar 

  • Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villain F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192

    Article  Google Scholar 

  • Atribak I, Bueno-López A, García-García A, Navarro P, Frías D, Montes M (2010) Catalytic activity for soot combustion of birnessite and cryptomelane. Appl Catal B Environ 93:267–273

    Article  Google Scholar 

  • Bitenc M, Dražić G, Orel ZC (2009) Characterization of crystalline zinc oxide in the form of hexagonal bipods. Cryst Growth Des 10:830–837

    Article  Google Scholar 

  • Blin B, Fiévet F, Beaupère D, Figlarz M (1989) Oxydation duplicative de l’éthylèneglycol dans un nouveau procédé de préparation de poudres métalliques. New J Chem 13:67–72

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE (2011) Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. J Phys Chem C 115:2656–2664

    Article  Google Scholar 

  • Chakroune N, Viau G, Ammar S, Jouini N, Gredin P, Vaulay MJ, Fiévet F (2005) Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide: Co(C2H4O2). New J Chem 29:355

    Article  Google Scholar 

  • Ching S, Landrigan JA, Jorgensen ML, Duan N, Suib SL, O’Young C-L (1995) Sol–gel synthesis of birnessite from KMnO4 and simple sugars. Chem Mater 7:1604–1606

    Article  Google Scholar 

  • Ching S, Petrovay DJ, Jorgensen ML, Suib SL (1997) Sol–gel synthesis of layered birnessite-type manganese oxides. Inorg Chem 36:883–890

    Article  Google Scholar 

  • Chkoundali S, Ammar S, Jouini N, Fiévet F, Molinié P, Danot M, Villain F, Grenèche JM (2004) Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. J Phys Condens Matter 16:4357–4372

    Article  Google Scholar 

  • Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem Mater 7:1226–1232

    Article  Google Scholar 

  • Fiévet F, Brayner R (2013) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, London

    Google Scholar 

  • Gaillot A-C, Drits VA, Plançon A, Lanson B (2004) Structure of synthetic K-rich birnessites obtained by high-temperature decomposition of KMnO4. 2. Phase and structural heterogeneities. Chem Mater 16:1890–1905

    Article  Google Scholar 

  • Gaudisson T, Artus M, Acevedo U, Herbst F, Nowak S, Valenzuela R, Ammar S (submitted to J Phys Condens Matter) On the microstructural and magnetic properties of fine grained CoFe2O4 ceramics produced by combining polyol process and Spark Plasma Sintering

  • Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139

    Article  Google Scholar 

  • Goikolea E, Daffos B, Taberna PL, Simon P (2013) Synthesis of nanosized MnO2 prepared by the polyol method and its application in high power supercapacitors. Mater Renew Sustain Energy 2:16

    Article  Google Scholar 

  • Larcher D, Sudant G, Patrice R, Tarascon JM (2003) Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles. Chem Mater 15:3543–3551

    Article  Google Scholar 

  • Latimer WM (1952) Oxidation potentials, 2nd edn. Prentice Hall Inc., New York

    Google Scholar 

  • Li Y, Wang J, Zhang Y, Banis MN, Liu J, Geng D, Li R, Sun X (2012) Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J Colloid Interface Sci 369:123–128

    Article  Google Scholar 

  • Liu L, Yang Z, Liang H, Yang H, Yang Y (2010) Shape-controlled synthesis of manganese oxide nanoplates by a polyol-based precursor route. Mater Lett 64:891–893

    Article  Google Scholar 

  • Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsletter of the Commission on Powder Diffraction: 14

  • Ma R, Bando Y, Zhang L, Sasaki T (2004) Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv Mater 16:918–922

    Article  Google Scholar 

  • Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L, Xu J, Wang X (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431

    Article  Google Scholar 

  • Nayak PK, Munichandraiah N (2011) Mesoporous MnO2 synthesized by using a tri-block copolymer for electrochemical supercapacitor studies. Microporous Mesoporous Mater 143:206–214

    Article  Google Scholar 

  • Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos JP, Kumagai N (2008) Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim Acta 53:3084–3093

    Article  Google Scholar 

  • Orel ZC, Anžlovar A, Dražić G, Žigon M (2007) Cuprous oxide nanowires prepared by an additive-free polyol process. Cryst Growth Des 7:453–458

    Article  Google Scholar 

  • Portehault D, Cassaignon S, Nassif N, Baudrin E, Jolivet JP (2008) A core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew Chem Int Ed 47:6441–6444

    Article  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454

    Article  Google Scholar 

  • Post JE, Veblen DR (1990) Am Mineral 75:477–489

    Google Scholar 

  • Ragupathy P, Park DH, Campet G, Vasan HN, Hwang S-J, Choy J-H, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Article  Google Scholar 

  • Ramana CV, Massot M, Julien CM (2005) XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf Interface Anal 37:412–416

    Article  Google Scholar 

  • Rhadfi T, Piquemal J-Y, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A (2010) Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal A Gen 386:132–139

    Article  Google Scholar 

  • Rhadfi T, Sicard L, Testard F, Taché O, Atlamsani A, Anxolabéhère-Mallart E, Le Du Y, Binet L, Piquemal J-Y (2012) A comprehensive study of the mechanism of formation of polyol-made hausmannite nanoparticles: from molecular species to solid precipitation. J Phys Chem C 116:5516–5523

    Article  Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids, 1st edn. Academic Press, San Diego

    Google Scholar 

  • Schweitzer GK, Pesterfield LL (2010) The aqueous chemistry of the elements. Oxford University Press, New York

    Google Scholar 

  • Sebastian L, Gopalakrishnan J (2003) Lithium ion mobility in metal oxides: a materials chemistry perspective based on a lecture delivered at the international symposium “Materials for energy: batteries and fuel cells”, November 2002, Madrid. J Mater Chem 13:433–441

  • Sicard L, Le Meins J-M, Méthivier C, Herbst F, Ammar S (2010) Polyol synthesis and magnetic study of Mn3O4 nanocrystals of tunable size. J Magn Magn Mater 322:2634–2640

    Article  Google Scholar 

  • Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077–2081

    Article  Google Scholar 

  • Soumare Y, Piquemal JY, Maurer T, Ott F, Chaboussant G, Falqui A, Viau G (2008) Oriented magnetic nanowires with high coercivity. J Mater Chem 18:5696–5702

    Article  Google Scholar 

  • Soumare Y, Garcia C, Maurer T, Chaboussant G, Ott F, Fiévet F, Piquemal J-Y, Viau G (2009) Kinetically controlled synthesis of hexagonally close-packed cobalt nanorods with high magnetic coercivity. Adv Funct Mater 19:1971–1977

    Article  Google Scholar 

  • Suib SL (2008) Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res 41:479–487

    Article  Google Scholar 

  • Tekaia-Elhsissen K, Delahaye-Vidal A, Nowogrocki G, Figlarz M (1989a) Solid-state chemistry: characterization and structure of a nickel ethylene glycolate Ni(OCH2–CH2O). C R Acad Sci Ser II 309:469–472

    Google Scholar 

  • Tekaia-Elhsissen K, Delahaye-Vidal A, Nowogrocki G, Figlarz M (1989b) Solid state chemistry: reaction of nickel hydroxide with ethylene glycol. C R Acad Sci Ser II 309:349–352

    Google Scholar 

  • Toneguzzo P, Viau G, Acher O, Fiévet-Vincent F, Fiévet F (1998) Monodisperse ferromagnetic particles for microwave applications. Adv Mater 10:1032–1035

    Article  Google Scholar 

  • Ung D, Viau G, Ricolleau C, Warmont F, Gredin P, Fiévet F (2005) CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol. Adv Mater 17:338–344

    Article  Google Scholar 

  • Ung D, Soumare Y, Chakroune N, Viau G, Vaulay M-J, Richard V, Fiévet F (2007) Growth of magnetic nanowires and nanodumbbells in liquid polyol. Chem Mater 19:2084–2094

    Article  Google Scholar 

  • Viau G, Brayner R, Poul L, Chakroune N, Lacaze E, Fiévet-Vincent F, Fiévet F (2003) Ruthenium nanoparticles: size, shape, and self-assemblies. Chem Mater 15:486–494

    Article  Google Scholar 

  • Wang Y-T, Lu A-H, Li W-C (2012) Mesoporous manganese dioxide prepared under acidic conditions as high performance electrode material for hybrid supercapacitors. Microporous Mesoporous Mater 153:247–253

    Article  Google Scholar 

  • Wieland B, Lancaster JP, Hoaglund CS, Holota P, Tornquist WJ (1996) Electrochemical and infrared spectroscopic quantitative determination of the platinum-catalyzed ethylene glycol oxidation mechanism at co adsorption potentials. Langmuir 12:2594–2601

    Article  Google Scholar 

  • Yang L-X, Zhu Y-J, Cheng G-F (2007) Synthesis of well-crystallized birnessite using ethylene glycol as a reducing reagent. Mater Res Bull 42:159–164

    Article  Google Scholar 

  • Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41:4218–4244

    Article  Google Scholar 

  • Zhang X, Chang X, Chen N, Wang K, Kang L, Liu Z-H (2012) Synthesis and capacitive property of δ-MnO2 with large surface area. J Mater Sci 47:999–1003

    Article  Google Scholar 

  • Zhou J, Yu L, Sun M, Yang S, Ye F, He J, Hao Z (2013) Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor. Ind Eng Chem Res 52:9586–9593

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the French ministry of foreign affairs and the China scholarship council under the Egide Cai Yuanpei French–Chinese program. The authors would like to thank Dr. J. Lomas for constructive discussions and for correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Yves Piquemal or Lin Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, G., Chau, F., Piquemal, JY. et al. Polyol-mediated syntheses of crystalline nanosized manganese oxides. J Nanopart Res 16, 2428 (2014). https://doi.org/10.1007/s11051-014-2428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2428-9

Keywords

Navigation