Skip to main content
Log in

Mesoporous silica nanoparticles with tunable pore size for tailored gold nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The aim of this paper was to verify a possible correlation between the pore-size of mesoporous silica nanoparticles (MSNs) and the sizes of gold nanoparticles (AuNPs) obtained by an impregnation of gold(III) chloride hydrate solution in the MSNs, followed by a specific thermal treatment. Mesoporous silica nanoparticles with tunable pore diameter were synthesized via a surfactant-assisted method. Tetraethoxysilane as silica precursor, cetyltrimethylammonium bromide (CTAB) as surfactant and toluene as swelling agent were used. By varying the CTAB–toluene molar ratio, the average dimension of the pores could be tuned from 2.8 to 5.5 nm. Successively, thiol groups were grafted on the surface of the MSNs. Finally, the thermal evolution of the gold salt, followed by “in situ” X-ray powder diffraction (XRPD) and thermogravimetric analysis (TGA), revealed an evident correlation among the degradation of the thiol groups, the pore dimension of the MSNs and the size of the AuNPs. The samples were characterized by means of nitrogen adsorption–desorption, transmission electron microscopy, small-angle X-ray scattering, XRPD “in situ” by synchrotron radiation, and “ex situ” by conventional techniques, diffuse reflectance infrared Fourier transform spectroscopy, and TGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asaro F, Benedetti A, Freris I, Riello P, Savko N (2010) Evolution of the nonionic inverse microemulsion–acid–TEOS system during the synthesis of nanosized silica via the sol–gel process. Langmuir 26:12917–12925. doi:10.1021/la101737x

    Article  Google Scholar 

  • Badaničová M, Zeleňák V (2010) Organo-modified mesoporous silica for sorption of carbon dioxide. Monatsh Chem 141:677–684. doi:10.1007/s00706-010-0304-6

    Article  Google Scholar 

  • Bae JY, Choi S, Bae B (2006) Preparation and optical characterization of mesoporous silica films with different pore sizes. Bull Korean Chem Soc 27:1562–1566

    Article  Google Scholar 

  • Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. doi:10.1021/ja00053a020

    Article  Google Scholar 

  • Bergman L, Kankaanpää P, Tiitta S, Duchanoy A, Li L, Heino J, Lindén M (2013) Intracellular degradation of multilabeled poly(ethylene imine)–mesoporous silica–silica nanoparticles: implications for drug release. Mol Pharm 10:1795–1803. doi:10.1021/mp3005879

    Article  Google Scholar 

  • Biz S, Occelli M (1998) Synthesis and characterization of mesostructured materials. Catal Rev 40:329–407. doi:10.1080/01614949808007111

    Article  Google Scholar 

  • Büchel G, Grün M, Unger KK, Matsumoto A (1998) Tailored syntheses of nanostructured silicas: control of particle morphology, particle size and pore size. Supramol Sci 5:253–259. doi:10.1016/S0968-5677(98)00016-9

    Article  Google Scholar 

  • Cai W, Gao T, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32. doi:10.2147/NSA.S3788

    Google Scholar 

  • Cao L, Kruk M (2010) Synthesis of large-pore SBA-15 silica from tetramethyl orthosilicate using triisopropylbenzene as micelle expander. Colloids Surf A 357:91–96. doi:10.1016/j.colsurfa.2009.09.019

    Article  Google Scholar 

  • Cauda V, Argyo C, Bein T (2010a) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20:8693–8699. doi:10.1039/c0jm01390k

    Article  Google Scholar 

  • Cauda V, Scholossbauer A, Bein T (2010b) Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Mater 132:60–71. doi:10.1016/j.micromeso.2009.11.015

    Article  Google Scholar 

  • Chen TM, Brauer GM (1982) Solvent effects on bonding organo-silane to silica surfaces. J Dent Res 61:1439–1443. doi:10.1177/00220345820610121301

    Article  Google Scholar 

  • Choma J, Dziura A, Jamiola D, Nyga P, Jaroniec M (2011) Preparation and properties of silica–gold core–shell particles. Coll Surf A 373:167–171. doi:10.1016/j.colsurfa.2010.10.046

    Article  Google Scholar 

  • Choma J, Dziura A, Jamiola D, Nyga P, Jaroniec M (2012) Deposition of silver nanoparticles on silica spheres and rods. Coll Surf A 411:74–79. doi:10.1016/j.colsurfa.2012.07.004

    Article  Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 27:2096–2126. doi:10.1039/B707314N

    Article  Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150. doi:10.1016/j.tsf.2010.01.018

    Article  Google Scholar 

  • de Dios AS, Díaz-García ME (2010) Multifunctional nanoparticles: analytical prospects. Anal Chim Acta 666:1–22. doi:10.1016/j.aca.2010.03.038

    Article  Google Scholar 

  • Díaz I, Mohino F, Pérez-Pariente J, Sastre E (2003) Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids. Appl Catal A 242:161–169. doi:10.1016/S0926-860X(02)00501-X

    Article  Google Scholar 

  • Enrichi F, Riccò R, Meneghello A, Pierobon R, Cretaio E, Marinello F, Schiavuta P, Parma A, Riello P, Benedetti A (2010) Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling. Opt Mater 32:1652–1658. doi:10.1016/j.optmat.2010.04.026

    Article  Google Scholar 

  • Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem 115:3254–3258. doi:10.1002/ange.200351027

    Article  Google Scholar 

  • Fenger R, Fertitta E, Kirmse H, Thünemann AF, Rademann K (2012) Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys Chem Chem Phys 14:9343–9349. doi:10.1039/c2cp40792b10.1039/c2cp40792b

    Article  Google Scholar 

  • Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138–1143. doi:10.1126/science.7855591

    Article  Google Scholar 

  • Fuertes AB, Valle-Vigón P, Sevilla M (2010) Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. J Colloid Interf Sci 349:173–180. doi:10.1016/j.jcis.2010.05.041

    Article  Google Scholar 

  • Galarneau A, Iapichella J, Bonhomme K, Di Renzo F, Kooyman P, Terasaki O, Fajula F (2006) Controlling the morphology of mesostructured silicas by pseudomorphic transformation: a route towards applications. Adv Funct Mater 4(16):1657–1667. doi:10.1002/adfm.200500825

    Article  Google Scholar 

  • Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413. doi:10.1021/la00036a014

    Article  Google Scholar 

  • Hasan M, Bethell D, Brust M (2002) The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold: 1H NMR spectroscopic evidence from solutions of gold clusters. J Am Chem Soc 124:1132–1133. doi:10.1021/ja0120577

    Article  Google Scholar 

  • He Q, Shi J (2011a) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845–5855. doi:10.1039/c0jm03851b

    Article  Google Scholar 

  • He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, Chen Y (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31:1085–1092. doi:10.1016/j.biomaterials.2009.10.046

    Article  Google Scholar 

  • He Q, Shi J, Cui X, Wei C, Zhang L, Wu W, Bu W, Chen H, Wu H (2011b) Synthesis of oxygen-deficient luminescent mesoporous silica nanoparticles for synchronous drug delivery and imaging. Chem Commun 47:7947–7949. doi:10.1039/c1cc11479d

    Article  Google Scholar 

  • Hoshikawa Y, Yabe H, Nomura A, Yamaki T, Shimojima A, Okubo T (2010) Mesoporous silica nanoparticles with remarkable stability and dispersibility for antireflective coatings. Chem Mater 22:12–14. doi:10.1021/cm902239a

    Article  Google Scholar 

  • Huang L, Yan X, Kruk M (2010) Synthesis of ultralarge-pore FDU-12 silica with face-centered cubic structure. Langmuir 26:14871–14878. doi:10.1021/la102228u

    Article  Google Scholar 

  • Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–5399. doi:10.1021/nn200365a

    Article  Google Scholar 

  • Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M (2012) Silica–metal core–shell nanostructures. Adv Colloid Interface Sci 170:28–49. doi:10.1016/j.cis.2011.11.002

    Article  Google Scholar 

  • Kim TW, Chung PW, Lin VSY (2010) Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem Mater 22:5093–5104. doi:10.1021/cm1017344

    Article  Google Scholar 

  • Krawiec P, Kockrick E, Simon P, Auffermann G, Kaskel S (2006) Platinum-catalyzed template removal for the in situ synthesis of MCM-41 supported catalysts. Chem Mater 18:2663–2669. doi:10.1021/cm052830n

    Article  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. doi:10.1038/359710a0

    Article  Google Scholar 

  • Kruk M, Cao L (2007) Pore size tailoring in large-pore SBA-15 silica synthesized in the presence of hexane. Langmuir 23:7247–7254. doi:10.1021/la0702178

    Article  Google Scholar 

  • Kruk M, Jaroniec M, Sayari A (2000) New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous and Mesoporous Mater 35(36):545–553. doi:10.1016/S1387-1811(99)00249-8

    Article  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459. doi:10.1021/ja028650l

    Article  Google Scholar 

  • Lee B, Ma Z, Zhang Z, Park C, Dai S (2009) Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Microporous and Mesoporous Mater 122:160–167. doi:10.1016/j.micromeso.2009.02.029

    Article  Google Scholar 

  • Lefèvre B, Galarneau A, Iapichella J, Petitto C, Di Renzo F, Fajula F, Bayram-Hahn Z, Skudas R, Unger K (2005) Synthesis of large-pore mesostructured micelle-templated silicas as discrete spheres. Chem Mater 17:601–607. doi:10.1021/cm048481z

    Article  Google Scholar 

  • Li ZH, Gong YJ, Wu D, Sun YH, Wang J, Liu Y, Dong BZ (2001) SAXS analysis of interface in organo-modified mesoporous silica. Surf Interface Anal 31:897–900. doi:10.1002/sia.1118

    Article  Google Scholar 

  • Lin YS, Haynes CL (2009) Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. Chem Mater 21:3979–3986. doi:10.1021/cm901259n

    Article  Google Scholar 

  • Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842. doi:10.1021/ja910846q

    Article  Google Scholar 

  • Lindén M, Ågren P, Karlsson S, Bussian P, Amenitsch H (2000) Solubilization of oil in silicate-surfactant mesostructures. Langmuir 16:5831–5836. doi:10.1021/la991671h

    Article  Google Scholar 

  • Lindlar B, Kogelbauer A, Kooyman PJ, Prins R (2001) Synthesis of large pore silica with a narrow pore size distribution. Microporous Mesoporous Mater 44(45):89–94. doi:10.1016/S1387-1811(01)00172-X

    Article  Google Scholar 

  • Ma S, Wang Y, Zhu Y (2011) Condensation enthalpies of n-hexane in micelle-templated mesoporous silicas. J Porous Mater 14:279–284. doi:10.1007/s10934-006-9063-5

    Google Scholar 

  • Maldonado D, Tanchoux N, Trens P, Galarneau A, Garrone E, Renzo F, Fajula F (2007) A simple room temperature synthesis of mesoporous silica nanoparticles for drug storage and pressure pulsed delivery. J Porous Mater 18:233–239. doi:10.1007/s10934-010-9375-3

    Google Scholar 

  • Marquez DT, Carrillo AI, Scaiano JC (2013) Plasmon excitation of supported gold nanoparticles can control molecular release from supramolecular systems. Langmuir 29:10521–10528. doi:10.1021/la4019794

    Article  Google Scholar 

  • Nandiyanto ABD, Kim SG, Iskandar F, Okuyama K (2009) Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater 120:447–453. doi:10.1016/j.micromeso.2008.12.019

    Article  Google Scholar 

  • Ottaviani MF, Moscatelli A, Desplantier-Giscard D, Di Renzo F, Kooyman PJ, Alonso B, Galarneau A (2004) Synthesis of micelle-templated silicas from cetyltrimethylammonium bromide/1,3,5-trimethylbenzene micelles. J Phys Chem B 108:12123–12129. doi:10.1021/jp049032p

    Article  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949. doi:10.1002/smll.200700378

    Article  Google Scholar 

  • Park JH, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336. doi:10.1038/nmat2398

    Article  Google Scholar 

  • Park HS, Kim CW, Lee HJ, Choi JH, Lee SG, Yun YP, Kwon IC, Lee SJ, Jeong SY, Lee SC (2010) A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology 22:225101. doi:10.1088/0957-4484/21/22/225101

    Article  Google Scholar 

  • Parma A, Freris I, Riello P, Enrichi F, Cristofori D, Benedetti A (2010) Structural and photoluminescence properties of ZrO2:Eu3+@SiO2 nanophosphors as a function of annealing temperature. J Lumin 130:2429–2436. doi:10.1016/j.jlumin.2010.08.007

    Article  Google Scholar 

  • Polizzi S, Riello P, Balerna A, Benedetti A (2001) Nanostructure of Pd/SiO2 supported catalysts. Phys Chem Chem Phys 3:4614–4619. doi:10.1039/b105607g

    Article  Google Scholar 

  • Poteshnova MV, Zadymova NM (2006) Normal micelles and oil-in-water microemulsions in a water–toluene–tween 80 ternary system. Colloid J 68:201–210. doi:10.1134/S1061933X06020128

    Article  Google Scholar 

  • Qiao ZA, Zhang L, Guo M, Liu Y, Huo Q (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21:3823–3829. doi:10.1021/cm901335k

    Article  Google Scholar 

  • Riello P, Canton P, Fagherazzi G (1998a) Quantitative phase analysis in semicrystalline materials using the rietveld method. J App Cryst 31:78–82. doi:10.1107/S0021889897009631

    Article  Google Scholar 

  • Riello P, Canton P, Benedetti A (1998b) Au/C catalyst: experimental evidence of the coexistence of nanoclusters and larger Au particles. Langmuir 14:6617–6619. doi:10.1021/la9803272

    Article  Google Scholar 

  • Riello P, Lausi A, Macleaod J, Plaisier JR, Zeraushek G, Fornasiero P (2013) In situ reaction furnace for real-time XRD studies. J Synchrotron Rad 20:194–196. doi:10.1107/S0909049512039246

    Article  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. doi:10.1021/cr2001178

    Article  Google Scholar 

  • Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309–1315. doi:10.1088/0957-4484/17/5/024

    Article  Google Scholar 

  • Schulz-Ekloff G, Rathouskỳ J, Zukal A (1999) Mesoporous silica with controlled porous structure and regular morphology. Int J Inorg Mater 1:97–102. doi:10.1016/S1463-0176(99)00015-0

    Article  Google Scholar 

  • Schumacher K, Ravikovitch PI, Du Chesne A, Neimark AV, Unger KK (2000) Characterization of MCM-48 materials. Langmuir 16:4648–4654. doi:10.1021/la991595i

    Article  Google Scholar 

  • Sivestrini S, Riello P, Freris I, Cristofori D, Enrichi F, Benedetti A (2010) Structural and luminescence properties of europium(III)-doped zirconium carbonates and silica-supported Eu3+-doped zirconium carbonate nanoparticles. J Nanopart Res 12:993–1002. doi:10.1007/s11051-009-9655-5

    Article  Google Scholar 

  • Storaro L, Lenarda M, Moretti E, Talon A, Porta F, Moltrasio B, Canton P (2010) Gold stabilized aqueous sols immobilized on mesoporous CeO2–Al2O3 as catalysts for the preferential oxidation of carbon monoxide. J Colloid Interf Sci 350:435–442. doi:10.1016/j.jcis.2010.06.062

    Article  Google Scholar 

  • Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506. doi:10.1021/cr3000785

    Article  Google Scholar 

  • Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Accounts Chem Res 40:846–853. doi:10.1021/ar600032u

    Article  Google Scholar 

  • Upadhyayula VKK (2012) gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18. doi:10.1016/j.aca.2011.12.008

    Article  Google Scholar 

  • Vivero-Escoto JL, Slowing II, Wu CW, Lin VS (2009) Intracellular controlled release drug delivery in human celisby gold-capped mesoporous silica nanosphere. J Am Chem Soc 131:3462–3463. doi:10.1021/ja900025f

    Article  Google Scholar 

  • Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860. doi:10.1021/cr068020s

    Article  Google Scholar 

  • Wu SH, Hung Y, Mou CY (2011) Mesoporous silica nanoparticles as nanocarriers. Chem Commun 47:9972–9985. doi:10.1039/C1CC11760B

    Article  Google Scholar 

  • Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24:400–413

    Google Scholar 

  • Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VSY (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:1366–1375. doi:10.1021/nn103077k

    Article  Google Scholar 

  • Zhou W, Hunter HMA, Wright PA, Ge Q, Thomas JM (1998) Imaging the pore structure and polytypic intergrowths in mesoporous silica. J Phys Chem B 102:6933–6936. doi:10.1021/jp982579h

    Article  Google Scholar 

  • Zhou X, Xu M, Liu G, Panda D, Chen P (2010) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132:138–146. doi:10.1021/ja904307n

    Article  Google Scholar 

  • Zong J, Zhu Y, Yang X, Li C (2011) Preparation of monodispersed mesoporous silica spheres with tunable pore size and pore-size effects on adsorption of Au nanoparticles and urease. Mater Sci Eng C 31:166–172. doi:10.1016/j.msec.2010.08.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr D. Cristofori for bare silica TEM images, Mr T. Finotto for the SAXS and XRPD measurements and Mr. N. Mazzucco for EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Riello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (2209 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sponchia, G., Marin, R., Freris, I. et al. Mesoporous silica nanoparticles with tunable pore size for tailored gold nanoparticles. J Nanopart Res 16, 2245 (2014). https://doi.org/10.1007/s11051-014-2245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2245-1

Keywords

Navigation