Skip to main content
Log in

Characterizations of coal fly ash nanoparticles and induced in vitro toxicity in cell lines

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present study illustrates the characterization and cytotoxicity studies of coal fly ash nanoparticles (CFA-NPs). The coal fly ash (CFA) collected from electrostatic precipitator of a coal-fired power plant and the average size of the CFA-NPs was found to be 9–50 nm. Imaging techniques showed predominantly homogenous spherical shaped nanoparticles. The X-ray diffraction analysis and energy dispersive X-ray (EDAX) analysis spectra reveal the elemental constituents of the CFA-NPs contain several toxic heavy metals. Cytotoxicity of CFA-NPs was determined by MTT assay. Cellular metabolism is inhibited in a dose dependent manner by CFA concentrations varying from 13 to 800 μg mL−1. After 48 h exposure, the Hep2, A549 and HepG2 cell lines prove more sensitive to CFA-NPs at varying levels which results in IC50 (50 % inhibitory concentration) cytotoxicity end point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitken RL, Campbell DJ, Bell LC (1984) Properties of Australian fly ashes relevant to their agronomic utilization. Aust J Soil Res 22(4):443–453

    Article  Google Scholar 

  • Albritton D, Greenbaum DS (1998) Atmospheric observations: helping build the scientific basis for decisions related to airborne particulate matter. In: PM Measurements Research Workshop, Health Effects Institute, Chapel Hill, pp 9–12

  • Ali M, Rahman S, Rehman H, Bhatia K, Ansari RA, Raisuddin S (2007) Pro-apoptotic effect of fly ash leachates in hepatocytes of freshwater fish (Channa punctata Bloch). Toxicol In Vitro 21(1):63–71

    Article  Google Scholar 

  • Borm PJA, Tran L (2002) From quartz hazard to quartz risk: the coal mines revisited. Ann Occup Hyg 46(1):25–32

    Article  Google Scholar 

  • Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM (1996) Tissue sites of uptake of 14C-labeled C60. Bioorg Chem 24(4):376–385

    Article  Google Scholar 

  • Carbone F, Barone AC, Pagliara R, Beretta F, D’Anna A, D’Alessio A (2008a) Ultrafine particles formed by heating-up of droplets of simulated ash containing metals. Environ Eng Sci 25(10):1379–1387

    Article  Google Scholar 

  • Carbone F, Barone AC, De Filippo A, Beretta F, D’Anna A, D’Alessio A (2008b) Coagulation and adhesion of nanoparticles generated in flame from droplets of nickel nitrate aqueous solutions. Chem Eng Trans 16:87–94

    Google Scholar 

  • Carbone F, Pagliara R, Barone AC, Beretta F, D’Anna A (2009) Characterization of nano-ashes generated during pulverized coal combustion. National Agency for New Technologies, Energy and Environment programme Agreement Ministry of Economic Development—ENEA. Report RSE/2009/109, Italy, p 6

  • Costa DL, Dreher KL (1997) Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect 105(5):1053–1060

    Google Scholar 

  • D’Alessio A, Barone AC, Cau R, D’Anna A, Minutolo P (2005) Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm. Proc Combust Inst 30(2):2595–2603

    Article  Google Scholar 

  • Dalmau JL, Garau MA, Felipo MT (1990) Laboratory prediction of soluble compounds before soil recycling of wastes. Int J Environ Anal Chem 39(2):141–146

    Article  Google Scholar 

  • Diabate S, Bergfeldt B, Plaumann D, Ubel C, Weiss C (2011) Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells. Anal Bioanal Chem 401(10):3197–3212

    Article  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(10):1743–8977

    Google Scholar 

  • Duffin R, Mills NL, Donaldson K (2007) Nanoparticles, a thoracic toxicology perspective. Yonsei Med J 48(4):561–572

    Article  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Ali AS, Musarrat J (2012) Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci Total Environ 437:331–338

    Article  Google Scholar 

  • Fisher GL, McNeill KL, Prentice BA, McFarland AR (1983) Physical and biological studies of coal and oil fly ash. Environ Health Prespect 51:181–186

    Article  Google Scholar 

  • Gilmour MI, O’Connor S, Dick CAJ, Miller CA, Linak WP (2004) Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. J Air Waste Manag Assoc 54(3):286–295

    Article  Google Scholar 

  • Glovsky MM, Miguel AG, Cass GR (1997) Particulate air pollution: possible relevance in asthma. Allergy Asthma Proc 18(3):163–166

    Article  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  Google Scholar 

  • Heasman I, Watt J (1989) Particulate pollution case studies which illustrate uses of individual particle analysis by scanning electron microscopy. Environ Geochem Health 11(3–4):157–162

    Article  Google Scholar 

  • Ivan CB, Robbie PK (2007) Nanomaterials and nanoparticles: sources of toxicity. Biointerphases 2(4):17–71

    Google Scholar 

  • Kleinjans JC, Janssen YM, Van Agen B, Hageman GJ, Schreurs JG (1989) Genotoxicity of coal fly ash, assessed in vitro in Salmonella typhimurium and human lymphocytes, and in vivo in an occupationally exposed population. Mutat Res 224:127–134

    Article  Google Scholar 

  • Koch AM, Reynolds F, Merkle HP, Weissleder R, Josephson L (2005) Transport of surface modified nanoparticles through cell monolayers. ChemBioChem 6(2):337–345

    Article  Google Scholar 

  • Kutchko BG, Kim AG (2006) Fly ash characterization by SEM-EDS. Fuel 85(17–18):2537–2544

    Article  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460

    Article  Google Scholar 

  • Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 50(9):1565–1618

    Article  Google Scholar 

  • Manerikar RS, Apte AA, Ghole VS (2008) In vitro and in vivo genotoxicity assessment of Cr(VI) using comet assay in earthworm coelomocytes. Environ Toxicol Pharmacol 25(1):63–68

    Article  Google Scholar 

  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85(7):733–741

    Article  Google Scholar 

  • Markad VL, Kodam KM, Ghole VS (2012) Effect of fly ash on biochemical responses and DNA damage in earthworm, Dichogaster curgensis. J Hazard Mater 215:191–198

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311(5761):622–627

    Article  Google Scholar 

  • Oberdorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199

    Google Scholar 

  • Okeson CD, Riley MR, Fernandez A, Wendt JL (2003) Impact of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism. Chemosphere 51:1121–1128

    Article  Google Scholar 

  • Raman S, Patel AM, Shah GB, Kaswala RR (1996) Feasibility of some industrial wastes for soil improvement and crop production. J Indian Soc Soil Sci 44(1):147–150

    Google Scholar 

  • Rao VVB, Rao SRM (2006) Adsorption studies on treatment of textile dying industrial effluent by fly ash. Chem Eng J 116(1):77–84

    Article  Google Scholar 

  • Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26(2):351–361

    Article  Google Scholar 

  • Simonart T (2004) Iron: a target for the management of Kaposi’s sarcoma? BMC Cancer 4(1):1471–2407

    Article  Google Scholar 

  • Smith KR, Aust AE (1997) Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem Res Toxicol 10(7):828–834

    Article  Google Scholar 

  • Smith KR, Veranth JM, Lighty JS, Aust AE (1998) Mobilization of iron from coal fly ash was dependent upon particle size and source of coal. Chem Res Toxicol 11(12):1494–1500

    Article  Google Scholar 

  • Smith KR, Veranth JM, Hu AA, Lighty JS, Aust AE (2000) Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron, as a function of particle size and source of coal. Chem Res Toxicol 13(2):118–125

    Article  Google Scholar 

  • Smith KR, Veranth JM, Kodavanti UP, Aust AE (2006) Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles. Toxicol Sci 93(2):390–399

    Article  Google Scholar 

  • Suriyawong A, Gamble M, Lee MH, Axelbaum R, Biswas P (2006) Submicrometer particle formation and mercury speciation under O2–CO2 coal combustion. Energy Fuels 20(6):2357–2363

    Article  Google Scholar 

  • Thomas PK, Satpathy SK, Manna I, Chakraborty KK, Nando GB (2007) Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2(8):397–404

    Article  Google Scholar 

  • Van Maanen JMS, Borm PJA, Knaapen A, van Herwijnen M, Schilderman PAEL, Smith KR, Aust AE, Tomatis M, Fubini B (1999) In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal Toxicol 11(12):1123–1141

    Article  Google Scholar 

  • Xia T, Kovochich M, Nel A (2006) The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med 5(4):817–836

    Google Scholar 

  • Zhuang Y, Kim YJ, Lee TG, Biswas P (2000) Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J Electrost 48(3–4):245–260

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. R. Jayavel, Director, Centre for Nanoscience and Technology, Anna University, Chennai for his kind support and encouragement to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena Thiyagarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambandam, B., Palanisami, E., Abbugounder, R. et al. Characterizations of coal fly ash nanoparticles and induced in vitro toxicity in cell lines. J Nanopart Res 16, 2217 (2014). https://doi.org/10.1007/s11051-013-2217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2217-x

Keywords

Navigation