Skip to main content
Log in

Core–shell-structured nanothermites synthesized by atomic layer deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Thermite materials feature very exothermic solid-state redox reactions. However, the energy release rates of traditional thermite mixtures are limited by the reactant diffusion velocities. In this work, atomic layer deposition (ALD) is utilized to synthesize thermite materials with greatly enhanced reaction rates. By depositing certain types of metal oxides (oxidizers) onto a commercial Al nanopowder, core–shell-structured nanothermites can be produced. The average film deposition rate on the Al nanopowder is 0.17 nm/cycle for ZnO and 0.031 nm/cycle for SnO2. The thickness of the oxidizer layer can be precisely controlled by adjusting the ALD cycle number. The compositions, morphologies, and structures of the ALD nanothermites are characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The characterization results reveal nearly perfect coverage of the Al nanoparticles by uniform ALD oxidizer layers and confirm the formation of core–shell nanoparticles. Combustion properties of the nanothermites are probed by laser ignition technique. Reactions of the core–shell-structured nanothermites are several times faster than the mixture of nanopowders. The promoted reaction rate is mostly attributed to the uniform distribution of reactants on the nanometer scale. These core–shell-structured nanothermites provide a potential pathway to control and enhance thermite reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALD:

Atomic layer deposition

O/F:

Oxidizer to fuel ratio

XPS:

X-ray photoelectron spectroscopy

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive X-ray spectroscopy

HRTEM:

High-resolution transmission electron microscopy

XRD:

X-ray diffraction

References

  • An T, Zhao FQ, Yi JH, Fan XZ, Gao HX, Hao HX, Wang XH, Hu RZ, Qing P (2011) Preparation, characterization, decomposition mechanism and non-isothermal decomposition reaction kinetics of the super thermite Al/CuO precursor. Acta Phys 27(2):281–288

    CAS  Google Scholar 

  • Aumann CE, Skofronick GL, Martin JA (1995) Oxidation behavior of aluminum nanopowders. J Vac Sci Technol 13(3):1178–1183

    Article  CAS  Google Scholar 

  • Bhattacharya S, Gao Y, Apperson S, Subramaniam S, Shende R, Gangopadhyay S, Talantsev E (2006) A novel on-chip diagnostic method to measure burn rates of energetic materials. J Energy Mater 24(1):1–15

    Article  CAS  Google Scholar 

  • Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT (2005) Combustion velocities and propagation mechanisms of metastable interstitial composites. J Appl Phys 98(6):064903/1–064903/7

    CAS  Google Scholar 

  • Brown ME, Taylor SJ, Tribelhorn MJ (1998) Fuel-oxidant particle contact in binary pyrotechnic reactions. Propellants Explos Pyrotech 23:320

    Article  CAS  Google Scholar 

  • Clapsaddle BJ, Sprehn DW, Gash AE, Satcher J, Simpson RL (2004) A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase. J Non-Cryst Solids 350(1):173–181

    Article  CAS  Google Scholar 

  • Elam JW, Groner MD, George SM (2002) Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev Sci Instrum 78(3):2981–2987

    Article  Google Scholar 

  • Elam JW, Baker DA, Hryn AJ, Martinson ABF, Pellin MJ, Hupp JT (2008) Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin. J Vac Sci Technol A 26(2):244–252

    Article  CAS  Google Scholar 

  • Elam JW, Libera JA, Huynh TH, Feng H, Pellin MJ (2010) Atomic layer deposition of aluminum oxide in mesoporous silica gel. J Phys Chem C 114:17286–17292

    Article  CAS  Google Scholar 

  • Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC (2009) Catalytic nanoliths. Chem Eng Sci 64:560–567

    Article  CAS  Google Scholar 

  • Ferguson JD, Buechler KJ, Weimer AW, George SM (2005) SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: pathway to enhanced thermite materials. Powder Technol 156(2/3):154–163

    Article  CAS  Google Scholar 

  • Gash AE, Tillotson TM, Satcher J, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol–gel synthesis of porous Iron oxide monoliths from Fe salts. Chem Mater 13(3):999–1007

    Article  CAS  Google Scholar 

  • George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131

    Article  CAS  Google Scholar 

  • Granier JJ, Pantoya ML (2004) The effect of size distribution on burn rate in nanocomposite thermites: a probability density function study. Combust Theor Model 8(3):555–565

    Article  Google Scholar 

  • Guziewicz E, Godlewski M, Wachnicki L, Krajewski TA, Luka G, Gieraltowska S, Jakiela R, Stonert A, Lisowski W, Krawczyk M, Sobczak JW, Jablonski A (2012) ALD grown zinc oxide with controllable electrical properties. Semicond Sci Technol 27(7):074011

    Article  Google Scholar 

  • Heo J, Kim SB, Gordon RG (2012) Atomic layer deposition of tin oxide with nitric oxide as an oxidant gas. J Mater Chem 22:4599–4602

    Article  CAS  Google Scholar 

  • Kucheyev SO, Biener J, Wang YM, Baumann TF, Wu KJ, Buuren TV, Hamza AV, Satcher J, Elam JW, Pellin MJ (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett 86:083108(1–3)

    Google Scholar 

  • Kwon J, Ducere JM, Alphonse P, Bahrami M, Petrantoni M, Veyan JF, Tenailleau C, Esteve A, Rossi C, Chabal Y (2013) Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction. J ACS Appl Mater Interfaces 5:605–613

    Article  CAS  Google Scholar 

  • Levitas VI, Asay BW, Son SF, Pantoya M (2007) Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal. J Appl Phys 101:083524/1–083524/20

    CAS  Google Scholar 

  • Lu J, Sundqvist J, Ottosson M, Tarre A, Rosental A, Aarik J, Harsta A (2004) Microstructure characterization of ALD-grown epitaxial SnO2 thin films. J Cryst Growth 260:191–200

    Article  CAS  Google Scholar 

  • Luka G, Godlewski M, Guziewicz E, Stakhira P, Cherpak V, Volynyuk D (2012) ZnO films grown by atomic layer deposition for organic electronics. Semicond Sci Technol 27(7):074006

    Article  Google Scholar 

  • Malm J, Sahramo E, Perala J, Sajavaara T, Karppinen M (2011) Low-temperature atomic layer deposition of ZnO thin films: control of crystallinity and orientation. Thin Solid Films 519(16):5319–5322

    Article  CAS  Google Scholar 

  • Meng X, Geng D, Liu J, Banis MN, Zhang Y, Li R, Sun X (2010) Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J Phys Chem C 114:18330–18337

    Article  CAS  Google Scholar 

  • Meng X, Zhang Y, Sun Y, Banis MN, Li R, Sun X (2011a) Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase. Carbon 49:1133–1144

    Article  CAS  Google Scholar 

  • Meng X, Zhang Y, Li R, Sun X (2011b) Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. J Mater Chem 21:12321–12330

    Article  CAS  Google Scholar 

  • Nilsen O, Peussa M, Fjellvag H, Niinisto L, Kjekshus A (1999) Thin film deposition of lanthanum manganite perovskite by the ALE process. J Mater Chem 9:1781–1784

    Article  CAS  Google Scholar 

  • Ott AW, Chang RPH (1999) Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates. Mater Chem Phys 58:132–138

    Article  CAS  Google Scholar 

  • Ozgur U, Hofstetter D, Morkoc H (2010) ZnO devices and applications: a review of current status and future prospects. Proc IEEE 98(7):1–14

    Article  Google Scholar 

  • Prakash A, McCormic AV, Zachariah MR (2004) Aero-sol–gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials. Chem Mater 16(8):1466–1471

    Article  CAS  Google Scholar 

  • Prakash A, McCormic AV, Zachariah MR (2005) Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO4. Adv Mater 17(7):900–903

    Article  CAS  Google Scholar 

  • Prentice D, Pantoya ML, Clapsaddle BJ (2005) Effect of nanocomposite synthesis on the combustion performance of a ternary thermite. J Phys Chem B 109(43):20180–20185

    Article  CAS  Google Scholar 

  • Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16(4):919–931

    Article  CAS  Google Scholar 

  • Seim H, Nieminen M, Niinisto L, Fjellvag H, Johansson LS (1997) Growth of LaCoO3 thin films from beta-diketonate precursors. Appl Surf Sci 112:243–250

    Article  CAS  Google Scholar 

  • Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl Catal A 200:211–217

    Article  CAS  Google Scholar 

  • Stair PC, Marshall C, Xiong G, Feng H, Pellin MJ, Elam JW, Curtiss L, Iton L, Kung H, Kung M, Wang HH (2006) Novel, uniform nanostructured catalytic membranes. Top Catal 39(3–4):181–186

    Article  CAS  Google Scholar 

  • Sundqvist J, Lu J, Ottosson M, Harsta A (2006) Growth of SnO2 thin films by atomic layer deposition and chemical vapor deposition: a comparative study. Thin Solid Films 514(1–2):63–68

    Article  CAS  Google Scholar 

  • Tagststrom P, Martenson P, Jansson U, Carlsso JO (1999) Atomic layer epitaxy of tungsten oxide films using oxyfluorides as metal precursors. J Electrochem Soc 146(8):3139–3143

    Article  Google Scholar 

  • Takeuchi T, Doteshita I, Asami S (2004) Epitaxial growth of sub-nanometre thick tin dioxide films on sapphire substrates by pulsed atomic layer chemical vapor deposition. Surf Interface Anal 36:1133–1135

    Article  CAS  Google Scholar 

  • Tarre A, Rosental A, Aidla A, Aarik J, Sundqvist J, Harsta A (2002) New routes to SnO2 heteroepitaxy. Vacuum 67:571–575

    Article  CAS  Google Scholar 

  • Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinis SE (2008) Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol 181:292–300

    Article  CAS  Google Scholar 

  • Utriainen M, Lehto S, Niinisto L, Ducso C, Khanh NQ, Horvath ZE, Barsony I, Pecz B (1997) Porous silicon host matric for deposition by atomic layer epitaxy. Thin Solid Films 297:39–42

    Article  CAS  Google Scholar 

  • Valliappan S, Swiatkiewicz J, Puszynski JA (2005) Reactivity of aluminum nanopowders with metal oxides. Powder Technol 156:164–169

    Article  CAS  Google Scholar 

  • Vishnyakov AV, Gridasova TP, Chashchin VA, Rodina KV (2011) Catalytic properties of SnO2–TiO2 compositions in total methane oxidation. Kinet Catal 52(5):733–738

    Article  CAS  Google Scholar 

  • Wang LL, Munir ZA, Maximov YM (1993) Thermite reactions: their utilization in the synthesis and processing of materials. J Mater Sci 28(14):3693–3708

    Article  CAS  Google Scholar 

  • Wank JR, George SM, Weimer AW (2004) Nanocoating individual cohesive boron nitride particles in a fludized bed by ALD. Powder Technol 142:59–69

    Article  CAS  Google Scholar 

  • Yang TS, Cho W, Kim M, An KS, Chung TM, Kim CG, Kim Y (2005) Atomic layer deposition of nickel oxide films using Ni(dmamp)2 and water. Vac Surf Films 23(4):1238–1243

    Article  CAS  Google Scholar 

  • Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2010) Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: the role of oxygen release. J Phys Chem C 114:14269–14275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by Technology Foundation for Selected Overseas Chinese Scholars provided by Ministry of Personnel of the People’s Republic of China. The authors sincerely appreciate Dr. Fengqi Zhao, Dr. Xuezhong Fan, and Mr. Ting An at Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute for discussions on the combustion properties of nanothermites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, L., Gong, T., Hao, H. et al. Core–shell-structured nanothermites synthesized by atomic layer deposition. J Nanopart Res 15, 2150 (2013). https://doi.org/10.1007/s11051-013-2150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2150-z

Keywords

Navigation